Advertisement
Review| Volume 73, ISSUE 12, P1180-1188, June 15, 2013

The Action of Antidepressants on the Glutamate System: Regulation of Glutamate Release and Glutamate Receptors

  • Laura Musazzi
    Affiliations
    Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milano, Italy
    Search for articles by this author
  • Giulia Treccani
    Affiliations
    Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milano, Italy
    Search for articles by this author
  • Alessandra Mallei
    Affiliations
    Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milano, Italy
    Search for articles by this author
  • Maurizio Popoli
    Correspondence
    Address correspondence to Maurizio Popoli, Ph.D., University of Milano, Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano 20133, Italy
    Affiliations
    Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milano, Italy
    Search for articles by this author
      Recent compelling evidence has suggested that the glutamate system is a primary mediator of psychiatric pathology and also a target for rapid-acting antidepressants. Clinical research in mood and anxiety disorders has shown alterations in levels, clearance, and metabolism of glutamate and consistent volumetric changes in brain areas where glutamate neurons predominate. In parallel, preclinical studies with rodent stress and depression models have found dendritic remodeling and synaptic spines reduction in corresponding areas, suggesting these as major factors in psychopathology. Enhancement of glutamate release/transmission, in turn induced by stress/glucocorticoids, seems crucial for structural/functional changes. Understanding mechanisms of maladaptive plasticity may allow identification of new targets for drugs and therapies. Interestingly, traditional monoaminergic-based antidepressants have been repeatedly shown to interfere with glutamate system function, starting with modulation of N-methyl-D-aspartate (NMDA) receptors. Subsequently, it has been shown that antidepressants reduce glutamate release and synaptic transmission; in particular, it was found antidepressants prevent the acute stress-induced enhancement of glutamate release. Additional studies have shown that antidepressants may partly reverse the maladaptive changes in synapses/circuitry in stress and depression models. Finally, a number of studies over the years have shown that these drugs regulate glutamate receptors, reducing the function of NMDA receptors, potentiating the function of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, and, more recently, exerting variable effects on different subtypes of metabotropic glutamate receptors. The development of NMDA receptor antagonists has opened new avenues for glutamatergic, rapid acting, antidepressants, while additional targets in the glutamate synapse await development of new compounds for better, faster antidepressant action.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fonnum F.
        Glutamate: A neurotransmitter in mammalian brain.
        J Neurochem. 1984; 42: 1-11
        • Douglas R.J.
        • Martin K.A.
        Mapping the matrix: The ways of neocortex.
        Neuron. 2007; 56: 226-238
        • Popoli M.
        • Yan Z.
        • McEwen B.S.
        • Sanacora G.
        The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission.
        Nat Rev Neurosci. 2012; 13: 22-37
        • Krystal J.H.
        • Sanacora G.
        • Blumberg H.
        • Anand A.
        • Charney D.S.
        • Marek G.
        • et al.
        Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments.
        Mol Psychiatry. 2002; 7: S71-S80
        • McEwen B.S.
        Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain.
        Metabolism. 2005; 54: 20-23
        • Sanacora G.
        • Treccani G.
        • Popoli M.
        Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders.
        Neuropharmacology. 2012; 62: 63-77
        • Gorman J.M.
        • Docherty J.P.
        A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders.
        J Neuropsychiatry Clin Neurosci. 2010; 22: 256-264
        • Tokita K.
        • Yamaji T.
        • Hashimoto K.
        Roles of glutamate signaling in preclinical and/or mechanistic models of depression.
        Pharmacol Biochem Behav. 2012; 100: 688-704
        • Mauri M.C.
        • Ferrara A.
        • Boscati L.
        • Bravin S.
        • Zamberlan F.
        • Alecci M.
        • Invernizzi G.
        Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment.
        Neuropsychobiology. 1998; 37: 124-129
        • Mitani H.
        • Shirayama Y.
        • Yamada T.
        • Maeda K.
        • Ashby Jr, C.R.
        • Kawahara R.
        Correlation between plasma levels of glutamate, alanine and serine with severity of depression.
        Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30: 1155-1158
        • Küçükibrahimoğlu E.
        • Saygin M.Z.
        • Calişkan M.
        • Kaplan O.K.
        • Unsal C.
        • Gören M.Z.
        The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression.
        Eur J Clin Pharmacol. 2009; 65: 571-577
        • Levine J.
        • Panchalingam K.
        • Rapoport A.
        • Gershon S.
        • McClure R.J.
        • Pettegrew J.W.
        Increased cerebrospinal fluid glutamine levels in depressed patients.
        Biol Psychiatry. 2000; 47: 586-593
        • Frye M.A.
        • Tsai G.E.
        • Huggins T.
        • Coyle J.T.
        • Post R.M.
        Low cerebrospinal glutamate release: Effects of antidepressant drugs.
        Neurochem Int. 2007; 59: 138-149
        • Francis P.T.
        • Poynton A.
        • Lowe S.L.
        • Najlerahim A.
        • Bridges P.K.
        • Bartlett J.R.
        • et al.
        Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem.
        Brain Res. 1989; 494: 315-324
        • Hashimoto K.
        • Sawa A.
        • Iyo M.
        Increased levels of glutamate in brains from patients with mood disorders.
        Biol Psychiatry. 2007; 62: 1310-1316
        • Lan M.J.
        • McLoughlin G.A.
        • Griffin J.L.
        • Tsang T.M.
        • Huang J.T.
        • Yuan P.
        • et al.
        Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder.
        Mol Psychiatry. 2009; 14: 269-279
        • Yüksel C.
        • Öngür D.
        Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders.
        Biol Psychiatry. 2010; 68: 785-794
        • Kondo D.G.
        • Hellem T.L.
        • Sung Y.H.
        • Kim N.
        • Jeong E.K.
        • Delmastro K.K.
        • et al.
        Review: Magnetic resonance spectroscopy studies of pediatric major depressive disorder.
        Depress Res Treat. 2011; 2011: 650450
        • Hasler G.
        • van der Veen J.W.
        • Tumonis T.
        • Meyers N.
        • Shen J.
        • Drevets W.C.
        Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 2007; 64: 193-200
        • Taylor M.J.
        • Mannie Z.N.
        • Norbury R.
        • Near J.
        • Cowen P.J.
        Elevated cortical glutamate in young people at increased familial risk of depression.
        Int J Neuropsychopharmacol. 2010; 14: 255-259
        • Koolschijn P.C.
        • van Haren N.E.
        • Lensvelt-Mulders G.J.
        • Hulshoff Pol H.E.
        • Kahn R.S.
        Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies.
        Hum Brain Mapp. 2009; 30: 3719-3735
        • Lorenzetti V.
        • Allen N.B.
        • Fornito A.
        • Yücel M.
        Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies.
        J Affect Disord. 2009; 117: 1-17
        • Frodl T.
        • Schaub A.
        • Banac S.
        • Charypar M.
        • Jäger M.
        • Kümmler P.
        • et al.
        Reduced hippocampal volume correlates with executive dysfunctioning in major depression.
        J Psychiatry Neurosci. 2006; 31: 316-323
        • MacQueen G.M.
        • Campbell S.
        • McEwen B.S.
        • Macdonald K.
        • Amano S.
        • Joffe R.T.
        • et al.
        Course of illness, hippocampal function, and hippocampal volume in major depression.
        Proc Natl Acad Sci U S A. 2003; 100: 1387-1392
        • McEwen B.S.
        Stress, sex, and neural adaptation to a changing environment: Mechanisms of neuronal remodeling.
        Ann N Y Acad Sci. 2010; 1204: E38-E59
        • Musazzi L.
        • Racagni G.
        • Popoli M.
        Environmental stress, glucocorticoids and glutamate release: Effects of antidepressant drugs.
        Neurochem Int. 2011; 59: 138-149
        • Izquierdo A.
        • Wellman C.L.
        • Holmes A.
        Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice.
        J Neurosci. 2006; 26: 5733-5738
        • Magariños A.M.
        • McEwen B.S.
        Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors.
        Neuroscience. 1995; 69: 89-98
        • Watanabe Y.
        • Gould E.
        • Daniels D.C.
        • Cameron H.
        • McEwen B.S.
        Tianeptine attenuates stress-induced morphological changes in the hippocampus.
        Eur J Pharmacol. 1992; 222: 157-162
        • Radley J.J.
        • Sisti H.M.
        • Hao J.
        • Rocher A.B.
        • McCall T.
        • Hof P.R.
        • et al.
        Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex.
        Neuroscience. 2004; 125: 1-6
        • Cerqueira J.J.
        • Taipa R.
        • Uylings H.B.
        • Almeida O.F.
        • Sousa N.
        Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens.
        Cereb Cortex. 2007; 17: 1998-2006
        • Radley J.J.
        • Rocher A.B.
        • Janssen W.G.
        • Hof P.R.
        • McEwen B.S.
        • Morrison J.H.
        Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress.
        Exp Neurol. 2005; 196: 199-203
        • Rajkowska G.
        • Miguel-Hidalgo J.J.
        • Wei J.
        • Dilley G.
        • Pittman S.D.
        • Meltzer H.Y.
        • et al.
        Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.
        Biol Psychiatry. 1999; 45: 1085-1098
        • Duman R.S.
        Depression: A case of neuronal life and death?.
        Biol Psychiatry. 2004; 56: 140-145
        • Cazakoff B.N.
        • Howland J.G.
        Acute stress disrupts paired pulse facilitation and long-term potentiation in rat dorsal hippocampus through activation of glucocorticoid receptors.
        Hippocampus. 2010; 20: 1327-1331
        • Hascup E.R.
        • Hascup K.N.
        • Stephens M.
        • Pomerleau F.
        • Huettl P.
        • Gratton A.
        • Gerhardt G.A.
        Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex.
        J Neurochem. 2010; 115: 1608-1620
        • Karst H.
        • Berger S.
        • Turiault M.
        • Tronche F.
        • Schütz G.
        • Joëls M.
        Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone.
        Proc Natl Acad Sci U S A. 2005; 102: 19204-19207
        • Musazzi L.
        • Milanese M.
        • Farisello P.
        • Zappettini S.
        • Tardito D.
        • Barbiero V.S.
        • et al.
        Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: The dampening action of antidepressants.
        PLoS One. 2010; 5: e8566
        • Reznikov L.R.
        • Grillo C.A.
        • Piroli G.G.
        • Pasumarthi R.K.
        • Reagan L.P.
        • Fadel J.
        Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment.
        Eur J Neurosci. 2007; 25: 3109-3114
        • Satoh E.
        • Shimeki S.
        Acute restraint stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice.
        Neurochem Res. 2010; 35: 693-701
        • Groeneweg F.L.
        • Karst H.
        • de Kloet E.R.
        • Joels M.
        Rapid non-genomic effects of corticosteroids and their role in the central stress response.
        J Endocrinol. 2011; 209: 153-167
        • Caroni P.
        • Donato F.
        • Muller D.
        Structural plasticity upon learning: Regulation and functions.
        Nat Rev Neurosci. 2012; 13: 478-490
        • Radley J.J.
        • Rocher A.B.
        • Rodriguez A.
        • Ehlenberger D.B.
        • Dammann M.
        • McEwen B.S.
        • et al.
        Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex.
        J Comp Neurol. 2008; 507: 1141-1150
        • Nowak G.
        • Trullas R.
        • Layer R.T.
        • Skolnick P.
        • Paul I.A.
        Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid.
        J Pharmacol Exp Ther. 1993; 265: 1380-1386
        • Skolnick P.
        Antidepressants for the new millennium.
        Eur J Pharmacol. 1999; 375: 31-40
        • Bobula B.
        • Tokarski K.
        • Hess G.
        Repeated administration of antidepressants decreases field potentials in rat frontal cortex.
        Neuroscience. 2003; 120: 765-769
        • Tokarski K.
        • Bobula B.
        • Wabno J.
        • Hess G.
        Repeated administration of imipramine attenuates glutamatergic transmission in rat frontal cortex.
        Neuroscience. 2008; 153: 789-795
        • Michael-Titus A.T.
        • Bains S.
        • Jeetle J.
        • Whelpton R.
        Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex--a possible mechanism of neuroprotection in major depression?.
        Neuroscience. 2000; 100: 681-684
        • Raiteri L.
        • Raiteri M.
        • Bonanno G.
        Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons.
        Prog Neurobiol. 2002; 68: 287-309
        • Bonanno G.
        • Giambelli R.
        • Raiteri L.
        • Tiraboschi E.
        • Zappettini S.
        • Musazzi L.
        • et al.
        Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus.
        J Neurosci. 2005; 25: 3270-3279
        • Barbiero V.S.
        • Giambelli R.
        • Musazzi L.
        • Tiraboschi E.
        • Tardito D.
        • Perez J.
        • et al.
        Chronic antidepressants induce redistribution and differential activation of alphaCaM kinase II between presynaptic compartments.
        Neuropsychopharmacology. 2007; 32: 2511-2519
        • Celano E.
        • Tiraboschi E.
        • Consogno E.
        • D’Urso G.
        • Mbakop M.P.
        • Gennarelli M.
        • et al.
        Selective regulation of presynaptic calcium/calmodulin-dependent protein kinase II by psychotropic drugs.
        Biol Psychiatry. 2003; 53: 442-449
        • Racagni G.
        • Popoli M.
        The pharmacological properties of antidepressants.
        Int Clin Psychopharmacol. 2010; 25: 117-131
        • Wang S.J.
        • Su C.F.
        • Kuo Y.H.
        Fluoxetine depresses glutamate exocytosis in the rat cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels.
        Synapse. 2003; 48: 170-177
        • Pittaluga A.
        • Raiteri L.
        • Longordo F.
        • Luccini E.
        • Barbiero V.S.
        • Racagni G.
        • et al.
        Antidepressant treatments and function of glutamate ionotropic receptors mediating amine release in hippocampus.
        Neuropharmacology. 2007; 53: 27-36
      1. Czéh B, Di Benedetto B (2012): Antidepressants act directly on astrocytes: Evidences and functional consequences [published online ahead of print May 18]. Eur Neuropsychopharmacol.

        • Bagley J.
        • Moghaddam B.
        Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: Effects of pretreatment with saline or diazepam.
        Neuroscience. 1997; 77: 65-73
        • Bonavita C.
        • Ferrero A.
        • Cereseto M.
        • Velardez M.
        • Rubio M.
        • Wikinski S.
        Adaptive changes in the rat hippocampal glutamatergic neurotransmission are observed during long-term treatment with lorazepam.
        Psychopharmacology (Berl). 2003; 166: 163-167
        • Reagan L.P.
        • Reznikov L.R.
        • Evans A.N.
        • Gabriel C.
        • Mocaër E.
        • Fadel J.R.
        The antidepressant agomelatine inhibits stress-mediated changes in amino acid efflux in the rat hippocampus and amygdala.
        Brain Res. 2012; 1466: 91-98
        • Popoli M.
        • Musazzi L.
        • Treccani G.
        • Perego C.
        • Milanese M.
        • Bonanno G.
        • et al.
        Behavioural stress and acute corticosterone modify the readily releasable pool of vesicles in glutamatergic terminals of prefrontal and frontal cortex.
        Abstr Soc Neurosci. 2012; 69: 14
        • Wood G.E.
        • Young L.T.
        • Reagan L.P.
        • Chen B.
        • McEwen B.S.
        Stress-induced structural remodeling in hippocampus: Prevention by lithium treatment.
        Proc Natl Acad Sci U S A. 2004; 101: 3973-3978
        • Norrholm S.D.
        • Ouimet C.C.
        Altered dendritic spine density in animal models of depression and in response to antidepressant treatment.
        Synapse. 2001; 42: 151-163
        • Hajszan T.
        • Dow A.
        • Warner-Schmidt J.L.
        • Szigeti-Buck K.
        • Sallam N.L.
        • Parducz A.
        • et al.
        Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.
        Biol Psychiatry. 2009; 65: 392-400
        • Bessa J.M.
        • Ferreira D.
        • Melo I.
        • Marques F.
        • Cerqueira J.J.
        • Palha J.A.
        • et al.
        The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling.
        Mol Psychiatry. 2009; 14: 764-773
        • Skolnick P.
        • Layer R.T.
        • Popik P.
        • Nowak G.
        • Paul I.A.
        • Trullas R.
        Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: Implications for the pharmacotherapy of depression.
        Pharmacopsychiatry. 1996; 29: 23-26
        • Boyer P.A.
        • Skolnick P.
        • Fossom L.H.
        Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study.
        J Mol Neurosci. 1998; 10: 219-233
        • Ryan B.
        • Musazzi L.
        • Mallei A.
        • Tardito D.
        • Gruber S.H.
        • El Khoury A.
        • et al.
        Remodeling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression.
        Int J Neuropsychopharmacol. 2009; 12: 553-559
        • Calabrese F.
        • Guidotti G.
        • Molteni R.
        • Racagni G.
        • Mancini M.
        • Riva M.A.
        Stress-induced changes of hippocampal NMDA receptors: Modulation by duloxetine treatment.
        PLoS One. 2012; 7: e37916
        • Martínez-Turrillas R.
        • Del Río J.
        • Frechilla D.
        Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment.
        Neuropharmacology. 2005; 49: 1178-1188
        • Barbon A.
        • Popoli M.
        • La Via L.
        • Moraschi S.
        • Vallini I.
        • Tardito D.
        • et al.
        Regulation of editing and expression of glutamate alpha-amino-propionic-acid (AMPA)/kainate receptors by antidepressant drugs.
        Biol Psychiatry. 2006; 59: 713-720
        • Tan C.H.
        • He X.
        • Yang J.
        • Ong W.Y.
        Changes in AMPA subunit expression in the mouse brain after chronic treatment with the antidepressant maprotiline: A link between noradrenergic and glutamatergic function?.
        Exp Brain Res. 2006; 170: 448-456
        • Svenningsson P.
        • Tzavara E.T.
        • Witkin J.M.
        • Fienberg A.A.
        • Nomikos G.G.
        • Greengard P.
        Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac).
        Proc Natl Acad Sci U S A. 2002; 99: 3182-3187
        • Du J.
        • Gray N.A.
        • Falke C.A.
        • Chen W.
        • Yuan P.
        • Szabo S.T.
        • et al.
        Modulation of synaptic plasticity by antimanic agents: The role of AMPA glutamate receptor subunit 1 synaptic expression.
        J Neurosci. 2004; 24: 6578-6589
      2. Zhang J, Narr KL, Woods RP, Phillips OR, Alger JR, Espinoza RT (2012): Glutamate normalization with ECT treatment response in major depression [published online ahead of print May 8]. Mol Psychiatry.

        • Pilc A.
        • Chaki S.
        • Nowak G.
        • Witkin J.M.
        Mood disorders: Regulation by metabotropic glutamate receptors.
        Biochem Pharmacol. 2008; 75: 997-1006
        • Schoepp D.D.
        Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system.
        J Pharmacol Exp Ther. 2001; 299: 12-20
        • Smiałowska M.
        • Szewczyk B.
        • Branski P.
        • Wieronska J.M.
        • Pałucha A.
        • Bajkowska M.
        • Pilc A.
        Effect of chronic imipramine or electroconvulsive shock on the expression of mGluR1a and mGluR5a immunoreactivity in rat brain hippocampus.
        Neuropharmacology. 2002; 42: 1016-1023
        • Matrisciano F.
        • Storto M.
        • Ngomba R.T.
        • Cappuccio I.
        • Caricasole A.
        • Scaccianoce S.
        • et al.
        Imipramine treatment up-regulates the expression and function of mGlu2/3 metabotropic glutamate receptors in the rat hippocampus.
        Neuropharmacology. 2002; 42: 1008-1015
        • Wieronska J.M.
        • Kłak K.
        • Pałucha A.
        • Branski P.
        • Pilc A.
        Citalopram influences mGlu7, but not mGlu4 receptors' expression in the rat brain hippocampus and cortex.
        Brain Res. 2007; 1184: 88-95
      3. O’Connor RM, Pusceddu MM, Dinan TG, Cryan JF (2012): Impact of early-life stress, on group III mGlu receptor levels in the rat hippocampus: Effects of ketamine, electroconvulsive shock therapy and fluoxetine treatment [published online ahead of print May 17]. Neuropharmacology.

        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • Krystal J.H.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Ibrahim L.
        • Diazgranados N.
        • Franco-Chaves J.
        • Brutsche N.
        • Henter I.D.
        • Kronstein P.
        • et al.
        Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: Results from a 4-week, double-blind, placebo-controlled study.
        Neuropsychopharmacology. 2012; 37: 1526-1533
        • Aan Het Rot M.
        • Zarate Jr, C.A.
        • Charney D.S.
        • Mathew S.J.
        Ketamine for depression: Where do we go from here?.
        Biol Psychiatry. 2012; 72: 537-547
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Li N.
        • Liu R.J.
        • Dwyer J.M.
        • Banasr M.
        • Lee B.
        • Son H.
        • Li X.Y.
        • et al.
        Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.
        Biol Psychiatry. 2011; 69: 754-761
        • Popik P.
        • Kos T.
        • Sowa-Kućma M.
        • Nowak G.
        Lack of persistent effects of ketamine in rodent models of depression.
        Psychopharmacology (Berl). 2008; 198: 421-430
        • Maeng S.
        • Zarate Jr, C.A.
        • Du J.
        • Schloesser R.J.
        • McCammon J.
        • Chen G.
        • Manji H.K.
        Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.
        Biol Psychiatry. 2008; 63: 349-352
        • Dybała M.
        • Siwek A.
        • Poleszak E.
        • Pilc A.
        • Nowak G.
        Lack of NMDA-AMPA interaction in antidepressant-like effect of CGP 37849, an antagonist of NMDA receptor, in the forced swim test.
        J Neural Transm. 2008; 115: 1519-1520
        • Du J.
        • Machado-Vieira R.
        • Maeng S.
        • Martinowich K.
        • Manji H.K.
        • Zarate C.A.
        Enhancing AMPA to NMDA throughput as a convergent mechanism for antidepressant action.
        Drug Discovery Today Ther Strateg. 2006; 3: 519-526
        • O'Neill M.J.
        • Bleakman D.
        • Zimmerman D.M.
        • Nisenbaum E.S.
        AMPA receptor potentiators for the treatment of CNS disorders.
        Curr Drug Targets CNS Neurol Disord. 2004; 3: 181-194
        • Li X.
        • Tizzano J.P.
        • Griffey K.
        • Clay M.
        • Lindstrom T.
        • Skolnick P.
        Anti depressant-like actions of an AMPA receptor potentiator (LY392098).
        Neuropharmacology. 2001; 40: 1028-1033
      4. Chaki S, Ago Y, Palucha-Paniewiera A, Matrisciano F, Pilc A (2012): mGlu2/3 and mGlu5 receptors: Potential targets for novel antidepressants [published online ahead of print May 26]. Neuropharmacology.

        • O'Connor R.M.
        • Finger B.C.
        • Flor P.J.
        • Cryan J.F.
        Metabotropic glutamate receptor 7: At the interface of cognition and emotion.
        Eur J Pharmacol. 2010; 639: 123-131
        • Koike H.
        • Iijima M.
        • Chaki S.
        Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists.
        Neuropharmacology. 2011; 61: 1419-1423
        • Dwyer J.M.
        • Lepack A.E.
        • Duman R.S.
        mTOR activation is required for the antidepressant effects of mGluR2/3 blockade.
        Int J Neuropsychopharmacol. 2012; 15: 429-434
        • Liston C.
        • Miller M.M.
        • Goldwater D.S.
        • Radley J.J.
        • Rocher A.B.
        • Hof P.R.
        • et al.
        Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting.
        J Neurosci. 2006; 26: 7870-7874
        • Duman R.S.
        • Monteggia L.M.
        A neurotrophic model for stress-related mood disorders.
        Biol Psychiatry. 2006; 59: 1116-1127
        • Autry A.E.
        • Adachi M.
        • Nosyreva E.
        • Na E.S.
        • Los M.F.
        • Cheng P.F.
        • et al.
        NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.
        Nature. 2011; 475: 91-95
        • Baj G.
        • D'Alessandro V.
        • Musazzi L.
        • Mallei A.
        • Sartori C.R.
        • Sciancalepore M.
        • et al.
        Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: Further evidence of a spatial code for BDNF splice variants.
        Neuropsychopharmacology. 2012; 37: 1600-1611
        • Mallei A.
        • Baj G.
        • Corna S.
        • Tardito D.
        • Lee F.
        • Tongiorgi E.
        • et al.
        Analysis of epigenetic changes reveals selective impairment of BDNF-6 expression and dendritic translocation in transgenic mice carrying the BDNF Val66Met human polymorphism.
        Abstr Soc Neurosci. 2012; 167: 06
        • Paul I.A.
        • Nowak G.
        • Layer R.T.
        • Popik P.
        • Skolnick P.
        Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments.
        J Pharmacol Exp Ther. 1994; 269: 95-102
        • Nowak G.
        • Legutko B.
        • Skolnick P.
        • Popik P.
        Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors.
        Eur J Pharmacol. 1998; 342: 367-370
        • Ampuero E.
        • Rubio F.J.
        • Falcon R.
        • Sandoval M.
        • Diaz-Veliz G.
        • Gonzalez RE
        • et al.
        Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex.
        Neuroscience. 2010; 169: 98-108
        • Martinez-Turrillas R.
        • Frechilla D.
        • Del Río J.
        Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus.
        Neuropharmacology. 2002; 43: 1230-1237
        • Martínez-Turrillas R.
        • Del Río J.
        • Frechilla D.
        Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment.
        Neuropharmacology. 2005; 49: 1178-1188
        • Szegedi V.
        • Juhász G.
        • Zhang X.
        • Barkóczi B.
        • Qi H.
        • Madeira A
        • et al.
        Tianeptine potentiates AMPA receptors by activating CaMKII and PKA via the p38, p42/44 MAPK and JNK pathways.
        Neurochem Int. 2011; 59: 1109-1122