Advertisement
Review| Volume 73, ISSUE 12, P1156-1163, June 15, 2013

Download started.

Ok

Antidepressant Effects of the Muscarinic Cholinergic Receptor Antagonist Scopolamine: A Review

  • Wayne C. Drevets
    Affiliations
    Laureate Institute for Brain Research and the University of Oklahoma College of Medicine Department of Psychiatry, Tulsa, Oklahoma
    Search for articles by this author
  • Carlos A. Zarate Jr.
    Affiliations
    Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Maura L. Furey
    Correspondence
    Address correspondence to Maura L. Furey, Ph.D., National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, 15K North Dr, Bldg 15K, Rm. 115B, Bethesda, MD 20892-2070
    Affiliations
    Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
Published:November 30, 2012DOI:https://doi.org/10.1016/j.biopsych.2012.09.031
      The muscarinic cholinergic receptor system has been implicated in the pathophysiology of depression, with physiological evidence indicating this system is overactive or hyperresponsive in depression and with genetic evidence showing that variation in genes coding for receptors within this system are associated with higher risk for depression. In studies aimed at assessing whether a reduction in muscarinic cholinergic receptor function would improve depressive symptoms, the muscarinic receptor antagonist scopolamine manifested antidepressant effects that were robust and rapid relative to conventional pharmacotherapies. Here, we review the data from a series of randomized, double-blind, placebo-controlled studies involving subjects with unipolar or bipolar depression treated with parenteral doses of scopolamine. The onset and duration of the antidepressant response are considered in light of scopolamine’s pharmacokinetic properties and an emerging literature that characterizes scopolamine’s effects on neurobiological systems beyond the cholinergic system that appear relevant to the neurobiology of mood disorders. Scopolamine infused at 4.0 μg/kg intravenously produced robust antidepressant effects versus placebo, which were evident within 3 days after the initial infusion. Placebo-adjusted remission rates were 56% and 45% for the initial and subsequent replication studies, respectively. While effective in male and female subjects, the change in depression ratings was greater in female subjects. Clinical improvement persisted more than 2 weeks following the final infusion. The timing and persistence of the antidepressant response to scopolamine suggest a mechanism beyond that of direct muscarinic cholinergic antagonism. These temporal relationships suggest that scopolamine-induced changes in gene expression and synaptic plasticity may confer the therapeutic mechanism.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • Krystal J.H.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Zarate Jr, C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Giedke H.
        • Schwarzler F.
        Therapeutic use of sleep deprivation in depression.
        Sleep Med Rev. 2002; 6: 361-377
        • Shelton R.C.
        • Loosen P.T.
        Sleep deprivation accelerates the response to nortriptyline.
        Prog Neuropsychopharmacol Biol Psychiatry. 1993; 17: 113-123
        • Wu J.C.
        • Kelsoe J.R.
        • Schachat C.
        • Bunney B.G.
        • DeModena A.
        • Golshan S.
        • et al.
        Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder.
        Biol Psychiatry. 2009; 66: 298-301
        • Janowsky D.S.
        • el-Yousef M.K.
        • Davis J.M.
        • Sekerke H.J.
        A cholinergic-adrenergic hypothesis of mania and depression.
        Lancet. 1972; 2: 632-635
        • Davis J.L.
        • Gerbrandt L.K.
        • Cherkin A.
        Retroactive amnesia induced in chicks by the proline analog L-baikiain, without EEG seizures or depression.
        Physiol Behav. 1978; 21: 653-658
        • Janowsky D.S.
        • el-Yousef M.K.
        • Davis J.M.
        Acetylcholine and depression.
        Psychosom Med. 1974; 36: 248-257
        • Nurnberger Jr, J.I.
        • Jimerson D.C.
        • Simmons-Alling S.
        • Tamminga C.
        • Nadi N.S.
        • Lawrence D.
        • et al.
        Behavioral, physiological, and neuroendocrine responses to arecoline in normal twins and "well state" bipolar patients.
        Psychiatry Res. 1983; 9: 191-200
        • Risch S.C.
        • Kalin N.H.
        • Janowsky D.S.
        Cholinergic challenges in affective illness: Behavioral and neuroendocrine correlates.
        J Clin Psychopharmacol. 1981; 1: 186-192
        • Dilsaver S.C.
        Pathophysiology of "cholinoceptor supersensitivity" in affective disorders.
        Biol Psychiatry. 1986; 21: 813-829
        • Janowsky D.S.
        • Risch S.C.
        • Huey L.Y.
        • Kennedy B.
        • Ziegler M.
        Effects of physostigmine on pulse, blood pressure, and serum epinephrine levels.
        Am J Psychiatry. 1985; 142: 738-740
        • Rubin R.T.
        • O'Toole S.M.
        • Rhodes M.E.
        • Sekula L.K.
        • Czambel R.K.
        Hypothalamo-pituitary-adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration: Sex differences between major depressives and matched control subjects.
        Psychiatry Res. 1999; 89: 1-20
        • Berger M.
        • Riemann D.
        • Hochli D.
        • Spiegel R.
        The cholinergic rapid eye movement sleep induction test with RS-86. State or trait marker of depression?.
        Arch Gen Psychiatry. 1989; 46: 421-428
        • Gillin J.C.
        • Sitaram N.
        • Duncan W.C.
        Muscarinic supersensitivity: A possible model for the sleep disturbance of primary depression?.
        Psychiatry Res. 1979; 1: 17-22
        • Riemann D.
        • Hohagen F.
        • Krieger S.
        • Gann H.
        • Muller W.E.
        • Olbrich R.
        • et al.
        Cholinergic REM induction test: Muscarinic supersensitivity underlies polysomnographic findings in both depression and schizophrenia.
        J Psychiatr Res. 1994; 28: 195-210
        • Cannon D.M.
        • Klaver J.K.
        • Gandhi S.K.
        • Solorio G.
        • Peck S.A.
        • Erickson K.
        • et al.
        Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder.
        Mol Psychiatry. 2011; 16: 407-418
        • Comings D.E.
        • Wu S.
        • Rostamkhani M.
        • McGue M.
        • Iacono W.G.
        • MacMurray J.P.
        Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women.
        Am J Med Genet. 2002; 114: 527-529
        • Wang J.C.
        • Hinrichs A.L.
        • Stock H.
        • Budde J.
        • Allen R.
        • Bertelsen S.
        • et al.
        Evidence of common and specific genetic effects: Association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome.
        Hum Mol Genet. 2004; 13: 1903-1911
        • Riemann D.
        • Hohagen F.
        • Bahro M.
        • Berger M.
        Sleep in depression: The influence of age, gender and diagnostic subtype on baseline sleep and the cholinergic REM induction test with RS 86.
        Eur Arch Psychiatry Clin Neurosci. 1994; 243: 279-290
        • Rubin R.T.
        • Abbasi S.A.
        • Rhodes M.E.
        • Czambel R.K.
        Growth hormone responses to low-dose physostigmine administration: Functional sex differences (sexual diergism) between major depressives and matched controls.
        Psychol Med. 2003; 33: 655-665
        • Pongrac J.L.
        • Gibbs R.B.
        • Defranco D.B.
        Estrogen-mediated regulation of cholinergic expression in basal forebrain neurons requires extracellular-signal-regulated kinase activity.
        Neuroscience. 2004; 124: 809-816
        • Gibbs R.B.
        • Gabor R.
        • Cox T.
        • Johnson D.A.
        Effects of raloxifene and estradiol on hippocampal acetylcholine release and spatial learning in the rat.
        Psychoneuroendocrinology. 2004; 29: 741-748
        • Daniel J.M.
        • Dohanich G.P.
        Acetylcholine mediates the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus and the associated improvement in working memory.
        J Neurosci. 2001; 21: 6949-6956
        • Overstreet D.H.
        • Russell R.W.
        • Hay D.A.
        • Crocker A.D.
        Selective breeding for increased cholinergic function: Biometrical genetic analysis of muscarinic responses.
        Neuropsychopharmacology. 1992; 7: 197-204
        • Betin C.
        • DeFeudis F.V.
        • Blavet N.
        • Clostre F.
        Further characterization of the behavioral despair test in mice: Positive effects of convulsants.
        Physiol Behav. 1982; 28: 307-311
        • Browne R.G.
        Effects of antidepressants and anticholinergics in a mouse "behavioral despair" test.
        Eur J Pharmacol. 1979; 58: 331-334
        • Newhouse P.A.
        • Sunderland T.
        • Tariot P.N.
        • Weingartner H.
        • Thompson K.
        • Mellow A.M.
        • et al.
        The effects of acute scopolamine in geriatric depression.
        Arch Gen Psychiatry. 1988; 45: 906-912
        • Gillin J.C.
        • Sutton L.
        • Ruiz C.
        • Darko D.
        • Golshan S.
        • Risch S.C.
        • Janowsky D.
        The effects of scopolamine on sleep and mood in depressed patients with a history of alcoholism and a normal comparison group.
        Biol Psychiatry. 1991; 30: 157-169
        • Ebert U.
        • Grossmann M.
        • Oertel R.
        • Gramatte T.
        • Kirch W.
        Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effects of scopolamine in healthy volunteers.
        J Clin Pharmacol. 2001; 41: 51-60
        • Furey M.L.
        • Drevets W.C.
        Antidepressant efficacy of the antimuscarinic drug scopolamine: A randomized, placebo-controlled clinical trial.
        Arch Gen Psychiatry. 2006; 63: 1121-1129
        • Furey M.L.
        The prominent role of stimulus processing: Cholinergic function and dysfunction in cognition.
        Curr Opin Neurol. 2011; 24: 364-370
        • Furey M.L.
        • Pietrini P.
        • Haxby J.V.
        Cholinergic enhancement and increased selectivity of perceptual processing during working memory.
        Science. 2000; 290: 2315-2319
        • Furey M.L.
        • Pietrini P.
        • Haxby J.V.
        • Drevets W.C.
        Selective effects of cholinergic modulation on task performance during selective attention.
        Neuropsychopharmacology. 2008; 33: 913-923
        • Martinez V.
        • Parikh V.
        • Sarter M.
        Sensitized attentional performance and Fos-immunoreactive cholinergic neurons in the basal forebrain of amphetamine-pretreated rats.
        Biol Psychiatry. 2005; 57: 1138-1146
        • Sarter M.
        • Nelson C.L.
        • Bruno J.P.
        Cortical cholinergic transmission and cortical information processing in schizophrenia.
        Schizophr Bull. 2005; 31: 117-138
        • Frey K.A.
        • Koeppe R.A.
        • Mulholland G.K.
        • Jewett D.
        • Hichwa R.
        • Ehrenkaufer R.L.
        • et al.
        In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography.
        J Cereb Blood Flow Metab. 1992; 12: 147-154
        • Hyttel J.
        • Larsen J.J.
        • Christensen A.V.
        • Arnt J.
        Receptor-binding profiles of neuroleptics.
        Psychopharmacology Suppl. 1985; 2: 9-18
        • Richelson E.
        Antimuscarinic and other receptor-blocking properties of antidepressants.
        Mayo Clin Proc. 1983; 58: 40-46
        • Safer D.J.
        The concomitant effects of mild sleep loss and an anticholinergic drug.
        Psychopharmacologia. 1970; 17: 425-433
        • Sunderland T.
        • Tariot P.N.
        • Cohen R.M.
        • Weingartner H.
        • Mueller 3rd, E.A.
        • Murphy D.L.
        Anticholinergic sensitivity in patients with dementia of the Alzheimer type and age-matched controls. A dose-response study.
        Arch Gen Psychiatry. 1987; 44: 418-426
        • Nierenberg A.A.
        • DeCecco L.M.
        Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: A focus on treatment-resistant depression.
        J Clin Psychiatry. 2001; 62: 5-9
        • Drevets W.C.
        • Furey M.L.
        Replication of scopolamine's antidepressant efficacy in major depressive disorder: A randomized, placebo-controlled clinical trial.
        Biol Psychiatry. 2009; 67: 432-438
        • Furey M.L.
        • Khanna A.
        • Hoffman E.M.
        • Drevets W.C.
        Scopolamine produces larger antidepressant and antianxiety effects in women than in men.
        Neuropsychopharmacology. 2010; 35: 2479-2488
        • Quitkin F.M.
        • Stewart J.W.
        • McGrath P.J.
        Gender differences in treatment response.
        Am J Psychiatry. 2001; 158: 1531-1533
        • Berlanga C.
        • Flores-Ramos M.
        Different gender response to serotonergic and noradrenergic antidepressants. A comparative study of the efficacy of citalopram and reboxetine.
        J Affect Disord. 2006; 95: 119-123
        • Kornstein S.G.
        • Schatzberg A.F.
        • Thase M.E.
        • Yonkers K.A.
        • McCullough J.P.
        • Keitner G.I.
        • et al.
        Gender differences in treatment response to sertraline versus imipramine in chronic depression.
        Am J Psychiatry. 2000; 157: 1445-1452
        • Martenyi F.
        • Dossenbach M.
        • Mraz K.
        • Metcalfe S.
        Gender differences in the efficacy of fluoxetine and maprotiline in depressed patients: A double-blind trial of antidepressants with serotonergic or norepinephrinergic reuptake inhibition profile.
        Eur Neuropsychopharmacol. 2001; 11: 227-232
        • Khan A.
        • Brodhead A.E.
        • Kolts R.L.
        • Brown W.A.
        Severity of depressive symptoms and response to antidepressants and placebo in antidepressant trials.
        J Psychiatr Res. 2005; 39: 145-150
        • Thase M.E.
        • Entsuah A.R.
        • Rudolph R.L.
        Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors.
        Br J Psychiatry. 2001; 178: 234-241
        • Berlim M.T.
        • Turecki G.
        Definition, assessment, and staging of treatment-resistant refractory major depression: A review of current concepts and methods.
        Can J Psychiatry. 2007; 52: 46-54
        • Deisenhammer E.A.
        • Whitworth A.B.
        • Geretsegger C.
        • Kurzthaler I.
        • Gritsch S.
        • Miller C.H.
        • et al.
        Intravenous versus oral administration of amitriptyline in patients with major depression.
        J Clin Psychopharmacol. 2000; 20: 417-422
        • Pollock B.G.
        • Perel J.M.
        • Nathan R.S.
        • Kupfer D.J.
        Acute antidepressant effect following pulse loading with intravenous and oral clomipramine.
        Arch Gen Psychiatry. 1989; 46: 29-35
        • Brunton L.L.
        Goodman & Gilman's The Pharmacological Basis of Therapeutics.
        11th ed. McGraw-Hill, New York2006
        • Cusack B.
        • Nelson A.
        • Richelson E.
        Binding of antidepressants to human brain receptors: Focus on newer generation compounds.
        Psychopharmacology (Berl). 1994; 114: 559-565
        • Richelson E.
        Are receptor studies useful for clinical practice?.
        J Clin Psychiatry. 1983; 44: 4-9
        • Preskorn S.H.
        Clinical Pharmacology of Selective Serotonin Reuptake Inhibitors.
        Professional Communications Inc, Caddo, OK1996
        • Anderson I.M.
        SSRIS versus tricyclic antidepressants in depressed inpatients: a meta-analysis of efficacy and tolerability.
        Depress Anxiety. 1998; 7: 11-17
        • Gillin J.C.
        • Lauriello J.
        • Kelsoe J.R.
        • Rapaport M.
        • Golshan S.
        • Kenny W.M.
        • Sutton L.
        No antidepressant effect of biperiden compared with placebo in depression: A double-blind 6-week clinical trial.
        Psychiatry Res. 1995; 58: 99-105
        • Richelson E.
        Cholinergic transduction.
        in: Bloom F.E. Kupfer D.J. Psychopharmacology: The Fourth Generation of Progress. Raven Press, New York1995
        • Tizabi Y.
        • Getachew B.
        • Rezvani A.H.
        • Hauser S.R.
        • Overstreet D.H.
        Antidepressant-like effects of nicotine and reduced nicotinic receptor binding in the Fawn-Hooded rat, an animal model of co-morbid depression and alcoholism.
        Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33: 398-402
        • Wang D.W.
        • Zhou R.B.
        • Yao Y.M.
        Role of cholinergic anti-inflammatory pathway in regulating host response and its interventional strategy for inflammatory diseases.
        Chin J Traumatol. 2009; 12: 355-364
        • Overstreet D.H.
        • Friedman E.
        • Mathe A.A.
        • Yadid G.
        The Flinders Sensitive Line rat: A selectively bred putative animal model of depression.
        Neurosci Biobehav Rev. 2005; 29: 739-759
        • Liu H.F.
        • Zhou W.H.
        • Xie X.H.
        • Cao J.L.
        • Gu J.
        • Yang G.D.
        [Muscarinic receptors modulate the mRNA expression of NMDA receptors in brainstem and the release of glutamate in periaqueductal grey during morphine withdrawal in rats].
        Sheng Li Xue Bao. 2004; 56: 95-100
        • Janowsky D.S.
        • Overstreet D.H.
        • Nurnberger Jr, J.I.
        Is cholinergic sensitivity a genetic marker for the affective disorders?.
        Am J Med Genet. 1994; 54: 335-344
        • Rami A.
        • Ausmeir F.
        • Winckler J.
        • Krieglstein J.
        Differential effects of scopolamine on neuronal survival in ischemia and glutamate neurotoxicity: Relationships to the excessive vulnerability of the dorsoseptal hippocampus.
        J Chem Neuroanat. 1997; 13: 201-208
        • Krystal J.H.
        • Sanacora G.
        • Blumberg H.
        • Anand A.
        • Charney D.S.
        • Marek G.
        • et al.
        Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments.
        Mol Psychiatry. 2002; 7: S71-S80
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
      1. Li N, Liu R-J, Aghajanian G, Duman RS (2011): Rapid antidepressant actions of scopolamine require mtor sig-naling and synaptogenesis. Program # 903.15/KK17. 2011 Neuroscience Meeting Planner. Washington, DC: Society for Neurosciences.

        • Duman R.S.
        • Li N.
        • Liu R.J.
        • Duric V.
        • Aghajanian G.
        Signaling pathways underlying the rapid antidepressant actions of ketamine.
        Neuropharmacology. 2012; 62: 35-41
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Rawls S.M.
        • McGinty J.F.
        Muscarinic receptors regulate extracellular glutamate levels in the rat striatum: An in vivo microdialysis study.
        J Pharmacol Exp Ther. 1998; 286: 91-98
        • Putcha L.
        • Tietze K.J.
        • Bourne D.W.
        • Parise C.M.
        • Hunter R.P.
        • Cintron N.M.
        Bioavailability of intranasal scopolamine in normal subjects.
        J Pharm Sci. 1996; 85: 899-902
      2. Voleti B, Navarria AM, Duman RS (2012): Identification of muscarinic receptor subtype(s) that mediate the rapid antidepressant effects of scopolamine. Program # 69.28/Y1. 2012 Neuroscience Meeting Planner. New Orleans, LA: Society for Neurosciences.

        • Nachum Z.
        • Shahal B.
        • Shupak A.
        • Spitzer O.
        • Gonen A.
        • Beiran I.
        • et al.
        Scopolamine bioavailability in combined oral and transdermal delivery.
        J Pharmacol Exp Ther. 2001; 296: 121-123