Advertisement

A Methamphetamine Vaccine Attenuates Methamphetamine-Induced Disruptions in Thermoregulation and Activity in Rats

      Background

      There are no approved pharmacotherapies for d-methamphetamine (METH) addiction and existing therapies have limited efficacy. Advances in using immunotherapeutic approaches for cocaine and nicotine addiction have stimulated interest in creating a similar approach for METH addiction. This study investigated whether active vaccination against METH could potentially attenuate responses to METH in vivo.

      Methods

      Male Sprague Dawley rats (n = 32) received a four-boost series with one of three candidate anti-METH vaccines (MH2[R], MH6, and MH7) or a control keyhole limpet hemocyanin conjugate vaccine. Effects of METH on rectal temperature and wheel activity at 27°C ambient temperature were determined. The most efficacious vaccine, MH6, was then contrasted with keyhole limpet hemocyanin conjugate vaccine in a subsequent experiment (n = 16), wherein radiotelemetry determined home cage locomotor activity and body temperature at 23°C ambient temperature.

      Results

      The MH6 vaccine produced high antibody titers with nanomolar affinity for METH and sequestered METH in the periphery of rats. In experiment 1, the thermoregulatory and psychomotor responses produced by METH at 27°C were blocked in the MH6 group. In experiment 2, METH-induced decreases in body temperature and locomotor activity at 23°C were also attenuated in the MH6 group. A pharmacokinetic study in experiment 2 showed that MH6-vaccinated rats had higher METH serum concentrations, yet lower brain METH concentrations, than control rats, and METH concentrations correlated with individual antibody titer.

      Conclusions

      These data demonstrate that active immunopharmacotherapy provides functional protection against physiological and behavioral disruptions induced by METH.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kuehn B.
        FDA warns of adverse events linked to smoking cessation drug and antiepileptics.
        JAMA. 2008; 10: 1121-1122
        • Moreno A.Y.
        • Janda K.D.
        Immunopharmacotherapy: Vaccination strategies as a treatment for drug abuse and dependence.
        Pharmacol Biochem Behav. 2009; 92: 199-205
        • Shen X.
        • Kosten T.R.
        Immunotherapy for drug abuse.
        CNS Neurol Disord Drug Targets. 2011; 10: 876-879
        • LeSage M.G.
        • Keyler D.E.
        • Pentel P.R.
        Current status of immunologic approaches to treating tobacco dependence: Vaccines and nicotine-specific antibodies.
        AAPS J. 2006; 8: E65-E75
        • Gentry W.B.
        • Ruedi-Bettschen D.
        • Owens S.M.
        Development of active and passive human vaccines to treat methamphetamine addiction.
        Hum Vaccin. 2009; 5: 206-213
        • Janda K.D.
        • Treweek J.B.
        Vaccines targeting drugs of abuse: Is the glass half-empty or half-full?.
        Nat Rev Immunol. 2012; 12: 67-72
        • Kantak K.M.
        • Collins S.L.
        • Bond J.
        • Fox B.S.
        Time course of changes in cocaine self-administration behavior in rats during immunization with the cocaine vaccine IPC-1010.
        Psychopharmacology (Berl). 2001; 153: 334-340
        • Kantak K.M.
        • Collins S.L.
        • Lipman E.G.
        • Bond J.
        • Giovanoni K.
        • Fox B.S.
        Evaluation of anti-cocaine antibodies and a cocaine vaccine in a rat self-administration model.
        Psychopharmacology (Berl). 2000; 148: 251-262
        • Wee S.
        • Hicks M.J.
        • De B.P.
        • Rosenberg J.B.
        • Moreno A.Y.
        • Kaminsky S.M.
        • et al.
        Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects.
        Neuropsychopharmacology. 2012; 37: 1083-1091
        • Carrera M.R.
        • Ashley J.A.
        • Parsons L.H.
        • Wirsching P.
        • Koob G.F.
        • Janda K.D.
        Suppression of psychoactive effects of cocaine by active immunization.
        Nature. 1995; 378: 727-730
        • Carrera M.R.
        • Ashley J.A.
        • Wirsching P.
        • Koob G.F.
        • Janda K.D.
        A second-generation vaccine protects against the psychoactive effects of cocaine.
        Proc Natl Acad Sci U S A. 2001; 98: 1988-1992
        • Carrera M.R.
        • Ashley J.A.
        • Zhou B.
        • Wirsching P.
        • Koob G.F.
        • Janda K.D.
        Cocaine vaccines: Antibody protection against relapse in a rat model.
        Proc Natl Acad Sci U S A. 2000; 97: 6202-6206
        • Carrera M.R.
        • Ashley J.A.
        • Hoffman T.Z.
        • Isomura S.
        • Wirsching P.
        • Koob G.F.
        • Janda K.D.
        Investigations using immunization to attenuate the psychoactive effects of nicotine.
        Bioorg Med Chem. 2004; 12: 563-570
        • LeSage M.G.
        • Keyler D.E.
        • Hieda Y.
        • Collins G.
        • Burroughs D.
        • Le C.
        • Pentel P.R.
        Effects of a nicotine conjugate vaccine on the acquisition and maintenance of nicotine self-administration in rats.
        Psychopharmacology (Berl). 2006; 184: 409-416
        • Lindblom N.
        • de Villiers S.H.
        • Kalayanov G.
        • Gordon S.
        • Johansson A.M.
        • Svensson T.H.
        Active immunization against nicotine prevents reinstatement of nicotine-seeking behavior in rats.
        Respiration. 2002; 69: 254-260
        • Roiko S.A.
        • Harris A.C.
        • Keyler D.E.
        • Lesage M.G.
        • Zhang Y.
        • Pentel P.R.
        Combined active and passive immunization enhances the efficacy of immunotherapy against nicotine in rats.
        J Pharmacol Exp Ther. 2008; 325: 985-993
        • Pentel P.R.
        • Malin D.H.
        • Ennifar S.
        • Hieda Y.
        • Keyler D.E.
        • Lake J.R.
        • et al.
        A nicotine conjugate vaccine reduces nicotine distribution to brain and attenuates its behavioral and cardiovascular effects in rats.
        Pharmacol Biochem Behav. 2000; 65: 191-198
        • Cerny E.H.
        • Levy R.
        • Mauel J.
        • Mpandi M.
        • Mutter M.
        • Henzelin-Nkubana C.
        • et al.
        Preclinical development of a vaccine 'against smoking'.
        Onkologie. 2002; 25: 406-411
        • de Villiers S.H.
        • Lindblom N.
        • Kalayanov G.
        • Gordon S.
        • Johansson A.M.
        • Svensson T.H.
        Active immunization against nicotine alters the distribution of nicotine but not the metabolism to cotinine in the rat.
        Naunyn Schmiedebergs Arch Pharmacol. 2004; 370: 299-304
        • Keyler D.E.
        • Hieda St, Y.
        • Peter J.
        • Pentel P.R.
        Altered disposition of repeated nicotine doses in rats immunized against nicotine.
        Nicotine Tob Res. 1999; 1: 241-249
        • Keyler D.E.
        • Roiko S.A.
        • Benlhabib E.
        • LeSage St, M.G.
        • Peter J.V.
        • Stewart S.
        • et al.
        Monoclonal nicotine-specific antibodies reduce nicotine distribution to brain in rats: Dose- and affinity-response relationships.
        Drug Metab Dispos. 2005; 33: 1056-1061
        • Berkowitz B.
        • Spector S.
        Evidence for active immunity to morphine in mice.
        Science. 1972; 178: 1290-1292
        • Bonese K.F.
        • Wainer B.H.
        • Fitch F.W.
        • Rothberg R.M.
        • Schuster C.R.
        Changes in heroin self-administration by a rhesus monkey after morphine immunisation.
        Nature. 1974; 252: 708-710
        • Strahilevitz M.
        • Kelly K.A.
        • Tsui P.T.
        • Sehon A.H.
        Blocking of the effect of delta1 tetrahydrocannabinol (delta1THC) on spontaneous motor activity in the rat by immunization with a protein conjugate of delta1THC.
        Life Sci. 1974; 14: 1975-1989
        • Valentine J.L.
        • Owens S.M.
        Antiphencyclidine monoclonal antibody therapy significantly changes phencyclidine concentrations in brain and other tissues in rats.
        J Pharmacol Exp Ther. 1996; 278: 717-724
        • Hardin J.S.
        • Wessinger W.D.
        • Wenger G.R.
        • Proksch J.W.
        • Laurenzana E.M.
        • Owens S.M.
        A single dose of monoclonal anti-phencyclidine IgG offers long-term reductions in phencyclidine behavioral effects in rats.
        J Pharmacol Exp Ther. 2002; 302: 119-126
        • Kosten T.R.
        • Rosen M.
        • Bond J.
        • Settles M.
        • Roberts J.S.
        • Shields J.
        • et al.
        Human therapeutic cocaine vaccine: Safety and immunogenicity.
        Vaccine. 2002; 20: 1196-1204
        • Haney M.
        • Gunderson E.W.
        • Jiang H.
        • Collins E.D.
        • Foltin R.W.
        Cocaine-specific antibodies blunt the subjective effects of smoked cocaine in humans.
        Biol Psychiatry. 2010; 67: 59-65
        • Martell B.A.
        • Orson F.M.
        • Poling J.
        • Mitchell E.
        • Rossen R.D.
        • Gardner T.
        • Kosten T.R.
        Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: A randomized, double-blind, placebo-controlled efficacy trial.
        Arch Gen Psychiatry. 2009; 66: 1116-1123
        • Cornuz J.
        • Zwahlen S.
        • Jungi W.F.
        • Osterwalder J.
        • Klingler K.
        • van Melle G.
        • et al.
        A vaccine against nicotine for smoking cessation: A randomized controlled trial.
        PLoS One. 2008; 3: e2547
        • Hatsukami D.K.
        • Jorenby D.E.
        • Gonzales D.
        • Rigotti N.A.
        • Glover E.D.
        • Oncken C.A.
        • et al.
        Immunogenicity and smoking-cessation outcomes for a novel nicotine immunotherapeutic.
        Clin Pharmacol Ther. 2011; 89: 392-399
        • McMillan D.E.
        • Hardwick W.C.
        • Li M.
        • Gunnell M.G.
        • Carroll F.I.
        • Abraham P.
        • Owens S.M.
        Effects of murine-derived anti-methamphetamine monoclonal antibodies on (+)-methamphetamine self-administration in the rat.
        J Pharmacol Exp Ther. 2004; 309: 1248-1255
        • Byrnes-Blake K.A.
        • Laurenzana E.M.
        • Carroll F.I.
        • Abraham P.
        • Gentry W.B.
        • Landes R.D.
        • Owens S.M.
        Pharmacodynamic mechanisms of monoclonal antibody-based antagonism of (+)-methamphetamine in rats.
        Eur J Pharmacol. 2003; 461: 119-128
        • Byrnes-Blake K.A.
        • Laurenzana E.M.
        • Landes R.D.
        • Gentry W.B.
        • Owens S.M.
        Monoclonal IgG affinity and treatment time alters antagonism of (+)-methamphetamine effects in rats.
        Eur J Pharmacol. 2005; 521: 86-94
        • Gentry W.B.
        • Laurenzana E.M.
        • Williams D.K.
        • West J.R.
        • Berg R.J.
        • Terlea T.
        • Owens S.M.
        Safety and efficiency of an anti-(+)-methamphetamine monoclonal antibody in the protection against cardiovascular and central nervous system effects of (+)-methamphetamine in rats.
        Int Immunopharmacol. 2006; 6: 968-977
        • McMillan D.E.
        • Hardwick W.C.
        • Li M.
        • Owens S.M.
        Pharmacokinetic antagonism of (+)-methamphetamine discrimination by a low-affinity monoclonal anti-methamphetamine antibody.
        Behav Pharmacol. 2002; 13: 465-473
        • Byrnes-Blake K.A.
        • Carroll F.I.
        • Abraham P.
        • Owens S.M.
        Generation of anti-(+)methamphetamine antibodies is not impeded by (+)methamphetamine administration during active immunization of rats.
        Int Immunopharmacol. 2001; 1: 329-338
        • Duryee M.J.
        • Bevins R.A.
        • Reichel C.M.
        • Murray J.E.
        • Dong Y.
        • Thiele G.M.
        • Sanderson S.D.
        Immune responses to methamphetamine by active immunization with peptide-based, molecular adjuvant-containing vaccines.
        Vaccine. 2009; 27: 2981-2988
        • Carroll F.I.
        • Blough B.E.
        • Pidaparthi R.R.
        • Abraham P.
        • Gong P.K.
        • Deng L.
        • et al.
        Synthesis of mercapto-(+)-methamphetamine haptens and their use for obtaining improved epitope density on (+)-methamphetamine conjugate vaccines.
        J Med Chem. 2011; 54: 5221-5228
        • Moreno A.Y.
        • Mayorov A.V.
        • Janda K.D.
        Impact of distinct chemical structures for the development of a methamphetamine vaccine.
        J Am Chem Soc. 2011; 133: 6587-6595
        • Gilpin N.W.
        • Wright Jr, M.J.
        • Dickinson G.
        • Vandewater S.A.
        • Price J.U.
        • Taffe M.A.
        Influences of activity wheel access on the body temperature response to MDMA and methamphetamine.
        Pharmacol Biochem Behav. 2011; 99: 295-300
      1. Huang PK, Aarde SM, Angrish D, Houseknecht KL, Dickerson TJ, Taffe MA (2012): Contrasting effects of d-methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxypyrovalerone, and 4-methylmethcathinone on wheel activity in rats [published online ahead of print June 2]. Drug Alcohol Depend http://dx.doi.org/10.1016/j.drugalcdep.2012.05.011

      2. Miller ML, Creehan KM, Angrish D, Barlow DJ, Houseknecht KL, Dickerson TJ, Taffe MA (2012): Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone) [published online ahead of print July 23]. Drug Alcohol Depend http://dx.doi.org/10.1016/j.drugalcdep.2012.07.003

        • Hendrickson H.
        • Laurenzana E.
        • Owens S.M.
        Quantitative determination of total methamphetamine and active metabolites in rat tissue by liquid chromatography with tandem mass spectrometric detection.
        AAPS J. 2006; 8: E709-E717
        • Laurenzana E.M.
        • Byrnes-Blake K.A.
        • Milesi-Halle A.
        • Gentry W.B.
        • Williams D.K.
        • Owens S.M.
        Use of anti-(+)-methamphetamine monoclonal antibody to significantly alter (+)-methamphetamine and (+)-amphetamine disposition in rats.
        Drug Metab Dispos. 2003; 31: 1320-1326
        • Hicks M.J.
        • De B.P.
        • Rosenberg J.B.
        • Davidson J.T.
        • Moreno A.Y.
        • Janda K.D.
        • et al.
        Cocaine analog coupled to disrupted adenovirus: A vaccine strategy to evoke high-titer immunity against addictive drugs.
        Mol Ther. 2011; 19: 612-619
        • Pravetoni M.
        • Keyler D.E.
        • Raleigh M.D.
        • Harris A.C.
        • Lesage M.G.
        • Mattson C.K.
        • et al.
        Vaccination against nicotine alters the distribution of nicotine delivered via cigarette smoke inhalation to rats.
        Biochem Pharmacol. 2011; 81: 1164-1170
        • Laurenzana E.M.
        • Hendrickson H.P.
        • Carpenter D.
        • Peterson E.C.
        • Gentry W.B.
        • West M.
        • et al.
        Functional and biological determinants affecting the duration of action and efficacy of anti-(+)-methamphetamine monoclonal antibodies in rats.
        Vaccine. 2009; 27: 7011-7020
        • Buffum J.C.
        • Shulgin A.T.
        Overdose of 2.3 grams of intravenous methamphetamine: Case, analysis and patient perspective.
        J Psychoactive Drugs. 2001; 33: 409-412
        • Wallace M.E.
        • Squires R.
        Fatal massive amphetamine ingestion associated with hyperpyrexia.
        J Am Board Fam Pract. 2000; 13: 302-304
        • White S.R.
        Amphetamine toxicity.
        Semin Respir Crit Care Med. 2002; 23: 27-36
        • Myles B.J.
        • Jarrett L.A.
        • Broom S.L.
        • Speaker H.A.
        • Sabol K.E.
        The effects of methamphetamine on core body temperature in the rat--part 1: Chronic treatment and ambient temperature.
        Psychopharmacology (Berl). 2008; 198: 301-311
        • Groves P.M.
        • Thompson R.F.
        Habituation: A dual-process theory.
        Psychol Rev. 1970; 77: 419-450
        • Della Maggiore V.
        • Ralph M.R.
        The effect of amphetamine on locomotion depends on the motor device utilized. The open field vs. the running wheel.
        Pharmacol Biochem Behav. 2000; 65: 585-590
        • Bradbury A.J.
        • Costall B.
        • Naylor R.J.
        • Onaivi E.S.
        5-Hydroxytryptamine involvement in the locomotor activity suppressant effects of amphetamine in the mouse.
        Psychopharmacology (Berl). 1987; 93: 457-465
        • Gentry W.B.
        • Ghafoor A.U.
        • Wessinger W.D.
        • Laurenzana E.M.
        • Hendrickson H.P.
        • Owens S.M.
        (+)-Methamphetamine-induced spontaneous behavior in rats depends on route of (+)METH administration.
        Pharmacol Biochem Behav. 2004; 79: 751-760
        • Petry N.M.
        • Alessi S.M.
        • Ledgerwood D.M.
        A randomized trial of contingency management delivered by community therapists.
        J Consult Clin Psychol. 2012; 80: 286-298
        • Higgins S.T.
        • Budney A.J.
        • Bickel W.K.
        • Foerg F.E.
        • Donham R.
        • Badger G.J.
        Incentives improve outcome in outpatient behavioral treatment of cocaine dependence.
        Arch Gen Psychiatry. 1994; 51: 568-576
        • Dallery J.
        • Raiff B.
        Monetary-based consequences for drug abstinence: Methods of implementation and some considerations about the allocation of finances in substance abusers.
        Am J Drug Alcohol Abuse. 2012; 38: 20-29
        • DeFulio A.
        • Silverman K.
        Employment-based abstinence reinforcement as a maintenance intervention for the treatment of cocaine dependence: Post-intervention outcomes.
        Addiction. 2011; 106: 960-967