Advertisement

Transgenerational Epigenetic Effects on Brain Functions

      Psychiatric diseases are multifaceted disorders with complex etiology, recognized to have strong heritable components. Despite intense research efforts, genetic loci that substantially account for disease heritability have not yet been identified. Over the last several years, epigenetic processes have emerged as important factors for many brain diseases, and the discovery of epigenetic processes in germ cells has raised the possibility that they may contribute to disease heritability and disease risk. This review examines epigenetic mechanisms in complex diseases and summarizes the most illustrative examples of transgenerational epigenetic inheritance in mammals and their relevance for brain function. Environmental factors that can affect molecular processes and behavior in exposed individuals and their offspring, and their potential epigenetic underpinnings, are described. Possible routes and mechanisms of transgenerational transmission are proposed, and the major questions and challenges raised by this emerging field of research are considered.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Kendler K.S.
        Twin studies of psychiatric illness: An update.
        Arch Gen Psychiatry. 2001; 58: 1005-1014
        • Eichler E.E.
        • Flint J.
        • Gibson G.
        • Kong A.
        • Leal S.M.
        • Moore J.H.
        • et al.
        Missing heritability and strategies for finding the underlying causes of complex disease.
        Nat Rev Genet. 2010; 11: 446-450
        • Millan M.J.
        • Agid Y.
        • Brüne M.
        • Bullmore E.T.
        • Carter C.S.
        • Clayton N.S.
        • et al.
        Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy.
        Nat Rev Drug Discov. 2012; 11: 141-168
        • Gershon E.S.
        • Alliey-Rodriguez N.
        • Liu C.
        After GWAS: Searching for genetic risk for schizophrenia and bipolar disorder.
        Am J Psychiatry. 2011; 168: 253-256
        • Lewis C.M.
        • Ng M.Y.
        • Butler A.W.
        • Cohen-Woods S.
        • Uher R.
        • Pirlo K.
        • et al.
        Genome-wide association study of major recurrent depression in the U.K. population.
        Am J Psychiatry. 2010; 167: 949-957
        • So H.-C.
        • Gui A.H.S.
        • Cherny S.S.
        • Sham P.C.
        Evaluating the heritability explained by known susceptibility variants: A survey of ten complex diseases.
        Genetic Epidemiol. 2011; 35: 310-317
        • Manolio T.A.
        • Collins F.S.
        • Cox N.J.
        • Goldstein D.B.
        • Hindorff L.A.
        • et al.
        Finding the missing heritability of complex diseases.
        Nature. 2009; 461: 747-753
        • Danchin É.
        • Charmantier A.
        • Champagne F.A.
        • Mesoudi A.
        • Pujol B.
        • Blanchet S.
        • et al.
        Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution.
        Nat Rev Genet. 2011; 12: 475-486
      1. Bohacek J, Mansuy IM (2012): Epigenetic inheritance of disease and disease risk [published online ahead of print July 11]. Neuropsychopharmacology.

        • Tost J.
        DNA methylation: An introduction to the biology and the disease-associated changes of a promising biomarker.
        Methods Mol Biol. 2009; 507: 3-20
        • Tweedie-Cullen R.Y.
        • Reck J.M.
        • Mansuy I.M.
        Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain.
        J Proteome Res. 2009; 8: 4966-4982
        • Dawson MA.
        • Kouzarides T.
        Cancer epigenetics: From mechanism to therapy.
        Cell. 2012; 150: 12-27
        • Ghildiyal M.
        • Zamore P.D.
        Small silencing RNAs: An expanding universe.
        Nat Rev Genet. 2009; 10: 94-108
        • Day J.J.
        • Sweatt J.D.
        Epigenetic mechanisms in cognition.
        Neuron. 2011; 70: 813-829
        • Murgatroyd C.
        • Patchev A.V.
        • Wu Y.
        • Micale V.
        • Bockmuhl Y.
        • Fischer D.
        • et al.
        Dynamic DNA methylation programs persistent adverse effects of early-life stress.
        Nat Neurosci. 2009; 12: 1559-1566
        • Weaver I.C.
        Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: Let's call the whole thing off.
        Epigenetics. 2007; 2: 22-28
        • Chen J.
        • Evans A.N.
        • Liu Y.
        • Honda M.
        • Saavedra J.M.
        • Aguilera G.
        Maternal deprivation in rats is associated with corticotropin releasing hormone (Crh) promoter hypomethylation and enhances crh transcriptional responses to stress in adulthood.
        J Neuroendocrinol. 2012; 24: 1055-1064
        • Robison A.J.
        • Nestler E.J.
        Transcriptional and epigenetic mechanisms of addiction.
        Nat Rev Neurosci. 2011; 12: 623-637
        • Franklin TB.
        • Mansuy I.M.
        Epigenetic inheritance in mammals: Evidence for the impact of adverse environmental effects.
        Neurobiol Dis. 2010; 39: 61-65
        • Guerrero-Bosagna C.
        • Skinner M.K.
        Environmentally induced epigenetic transgenerational inheritance of phenotype and disease.
        Mol Cell Endocrinol. 2011; 354: 3-8
        • Jablonka E.
        • Raz G.
        Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution.
        Q Rev Biol. 2009; 84: 131-176
        • Jirtle RL.
        • Skinner M.K.
        Environmental epigenomics and disease susceptibility.
        Nat Rev Genet. 2007; 8: 253-262
        • Youngson NA.
        • Whitelaw E.
        Transgenerational epigenetic effects.
        Annu Rev Genomics Hum Genet. 2008; 9: 233-257
        • Champagne F.A.
        Epigenetic mechanisms and the transgenerational effects of maternal care.
        Front Neuroendocrinol. 2008; 29: 386-397
        • McGowan P.O.
        • Suderman M.
        • Sasaki A.
        • Huang T.C.
        • Hallett M.
        • Meaney M.J.
        • et al.
        Broad epigenetic signature of maternal care in the brain of adult rats.
        PLoS One. 2011; 6: e14739
        • Weaver I.C.
        • Cervoni N.
        • Champagne F.A.
        • D'Alessio A.C.
        • Sharma S.
        • Seckl J.R.
        • et al.
        Epigenetic programming by maternal behavior.
        Nat Neurosci. 2004; 7: 847-854
        • Weaver I.C.
        • D'Alessio A.C.
        • Brown S.E.
        • Hellstrom I.C.
        • Dymov S.
        • Sharma S.
        • et al.
        The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes.
        J Neurosci. 2007; 27: 1756-1768
        • Anway M.D.
        • Cupp A.S.
        • Uzumcu M.
        • Skinner M.K.
        Epigenetic transgenerational actions of endocrine disruptors and male fertility.
        Science. 2005; 308: 1466-1469
        • Curley J.
        • Mashoodh R.
        Parent-of-origin and trans-generational germline influences on behavioral development: The interacting roles of mothers, fathers, and grandparents.
        Dev Psychobiol. 2010; 52: 312-330
        • Grace K.S.
        • Sinclair K.D.
        Assisted reproductive technology, epigenetics, and long-term health: A developmental time bomb still ticking.
        Semin Reprod Med. 2009; 27: 409-416
        • Weaver J.
        • Susiarjo M.
        • Bartolomei M.
        Imprinting and epigenetic changes in the early embryo.
        Mamm Genome. 2009; 20: 532-543
        • Hajkova P.
        Epigenetic reprogramming in the germline: Towards the ground state of the epigenome.
        Phil Trans R Soc B Biol Sci. 2011; 366: 2266-2273
        • Fischer A.
        • Sananbenesi F.
        • Mungenast A.
        • Tsai L.H.
        Targeting the correct HDAC(s) to treat cognitive disorders.
        Trends Pharmacol Sci. 2010; 31: 605-617
        • Krawetz SA.
        Paternal contribution: New insights and future challenges.
        Nat Rev Genet. 2005; 6: 633-642
        • Johnson GD.
        • Lalancette C.
        • Linnemann A.K.
        • Fdr Leduc
        • Boissonneault G.
        • Krawetz S.A.
        The sperm nucleus: Chromatin, RNA, and the nuclear matrix.
        Reproduction. 2011; 141: 21-36
        • Sha K.
        A mechanistic view of genomic imprinting.
        Annu Rev Genomics Hum Genet. 2008; 9: 197-216
        • Paoloni-Giacobino A.
        • Chaillet J.
        The role of DMDs in the maintenance of epigenetic states.
        Cytogenet Genome Res. 2006; 113: 116-121
        • Bartolomei M.S.
        • Ferguson-Smith A.C.
        Mammalian genomic imprinting.
        Cold Spring Harb Perspect Biol. 2011; 3: a002592
        • Feng S.
        • Jacobsen S.E.
        • Reik W.
        Epigenetic reprogramming in plant and animal development.
        Science. 2010; 330: 622-627
        • Reik W.
        • Walter J.
        Genomic imprinting: parental influence on the genome.
        Nat Rev Genet. 2001; 2: 21-32
        • Borgel J.
        • Guibert S.
        • Li Y.
        • Chiba H.
        • Schubeler D.
        • Sasaki H.
        Targets and dynamics of promoter DNA methylation during early mouse development.
        Nat Genet. 2010; 42: 1093-1100
        • Guerrero-Bosagna C.
        • Settles M.
        • Lucker B.
        • Skinner MK.
        Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome.
        PLoS One. 2010; 5: e13100
        • Franklin T.B.
        • Russig H.
        • Weiss I.C.
        • Graff J.
        • Linder N.
        • Michalon A.
        Epigenetic transmission of the impact of early stress across generations.
        Biol Psychiatry. 2010; 68: 408-415
        • Oakes C.C.
        • Smiraglia D.J.
        • Plass C.
        • Trasler JM.
        • Robaire B.
        Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats.
        Proc Natl Acad Sci. 2003; 100: 1775-1780
        • Hammoud S.S.
        • Nix D.A.
        • Zhang H.
        • Purwar J.
        • Carrell D.T.
        • Cairns B.R.
        Distinctive chromatin in human sperm packages genes for embryo development.
        Nature. 2009; 460: 473-478
        • Puri D.
        • Dhawan J.
        • Mishra R.K.
        The paternal hidden agenda: Epigenetic inheritance through sperm chromatin.
        Epigenetics. 2010; 5: 386-391
        • Brykczynska U.
        • Hisano M.
        • Erkek S.
        • Ramos L.
        • Oakeley E.J.
        • Roloff T.C.
        Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa.
        Nat Struct Mol Biol. 2010; 17: 679-687
        • Hamatani T.
        Human spermatozoal RNAs.
        Fertil Steril. 2012; 97: 275-281
        • Johnson G.D.
        • Sendler E.
        • Lalancette C.
        • Hauser R.
        • Diamond M.P.
        • Krawetz S.A.
        Cleavage of rRNA ensures translational cessation in sperm at fertilization.
        Mol Hum Reprod. 2011; 17: 721-726
        • Krawetz SA.
        • Kruger A.
        • Lalancette C.
        • Tagett R.
        • Anton E.
        • Draghici S.
        • et al.
        A survey of small RNAs in human sperm.
        Hum Reprod. 2011; 26: 3401-3412
        • Suh N.
        • Blelloch R.
        Small RNAs in early mammalian development: From gametes to gastrulation.
        Development. 2011; 138: 1653-1661
        • Kim D.H.
        • Saetrom P.
        • Snove Jr, O.
        • Rossi J.J.
        MicroRNA-directed transcriptional gene silencing in mammalian cells.
        Proc Natl Acad Sci U S A. 2008; 105: 16230-16235
        • Morris KV.
        • Chan S.W.-L.
        • Jacobsen S.E.
        • Looney D..J.
        Small interfering RNA-induced transcriptional gene silencing in human cells.
        Science. 2004; 305: 1289-1292
        • Younger ST.
        • Corey D.R.
        Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters.
        Nucl Acids Res. 2011; 39: 5682-5691
        • Ostermeier GC.
        • Miller D.
        • Huntriss J.D.
        • Diamond M.P.
        • Krawetz S.A.
        Reproductive biology: Delivering spermatozoan RNA to the oocyte.
        Nature. 2004; 429: 154
        • Liu W.-M.
        • Pang R.T.K.
        • Chiu P.C.N.
        • Wong B.P.C.
        • Lao K.
        • Lee K.-F.
        • et al.
        Sperm-borne microRNA-34c is required for the first cleavage division in mouse.
        Proc Natl Acad Sci. 2012; 109: 490-494
        • Pang RTK.
        • Liu W.-M.
        • Leung C.O.N.
        • Ye T.-M.
        • Kwan P.C.K.
        • Lee K.-F.
        • et al.
        miR-135A regulates preimplantation embryo development through down-regulation of e3 ubiquitin ligase seven in absentia homolog 1a (SIAH1A) expression.
        PLoS ONE. 2011; 6: e27878
        • Law J.A.
        • Jacobsen S.E.
        Establishing, maintaining and modifying DNA methylation patterns in plants and animals.
        Nat Rev Genet. 2010; 11: 204-220
        • Aravin A.A.
        • Sachidanandam R.
        • Bourc'his D.
        • Schaefer C.
        • Pezic D.
        • Toth K.F.
        • et al.
        A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice.
        Mol Cell. 2008; 31: 785-799
        • Godfrey K.M.
        • Gluckman P.D.
        • Hanson M.A.
        Developmental origins of metabolic disease: Life course and intergenerational perspectives.
        Trends Endocrinol Metab. 2010; 21: 199-205
        • Morgan H.D.
        • Sutherland H.G.
        • Martin D.I.
        • Whitelaw E.
        Epigenetic inheritance at the agouti locus in the mouse.
        Nat Genet. 1999; 23: 314-318
        • Rakyan V.K.
        • Chong S.
        • Champ M.E.
        • Cuthbert P.C.
        • Morgan H.D.
        • Luu K.V.K.
        • et al.
        Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission.
        Proc Natl Acad Sci U S A. 2003; 100: 2538-2543
        • Rosenfeld CS.
        Animal models to study environmental epigenetics.
        Biol Reprod. 2010; 82: 473-488
        • Wolff GL.
        • Kodell R.L.
        • Moore S.R.
        • Cooney C.A.
        Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice.
        FASEB J. 1998; 12: 949-957
        • Fernandez-Gonzalez R.
        • Ramirez M.A.
        • Pericuesta E.
        • Calle A.
        • Gutierrez-Adan A.
        Histone modifications at the blastocyst Axin1Fu locus mark the heritability of in vitro culture-induced epigenetic alterations in mice.
        Biol Reprod. 2010; 83: 720-727
        • Cropley J.E.
        • Suter C.M.
        • Beckman K.B.
        • Martin D.I.
        Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation.
        Proc Natl Acad Sci U S A. 2006; 103: 17308-17312
        • Cropley JE.
        • Dang T.H.Y.
        • Martin D.I.K.
        • Suter C.M.
        The penetrance of an epigenetic trait in mice is progressively yet reversibly increased by selection and environment.
        Proc Biol Sci. 2012; 279 (2375–2353)
        • Li C.C.Y.
        • Cropley J.E.
        • Cowley M.J.
        • Preiss T.
        • Martin D.I.K.
        • Suter C.M.
        A sustained dietary change increases epigenetic variation in isogenic mice.
        PLoS Genet. 2011; 7: e1001380
        • Waterland R.A.
        • Travisano M.
        • Tahiliani K.G.
        Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female.
        FASEB J. 2007; 21: 3380-3385
        • Delaval K.
        • Govin J.
        • Cerqueira F.
        • Rousseaux S.
        • Khochbin S.
        • Feil R.
        Differential histone modifications mark mouse imprinting control regions during spermatogenesis.
        EMBO J. 2007; 26: 720-729
        • Heim C.
        • Newport D.J.
        • Mletzko T.
        • Miller A.H.
        • Nemeroff C.B.
        The link between childhood trauma and depression: Insights from HPA axis studies in humans.
        Psychoneuroendocrinology. 2008; 33: 693-710
        • Franklin T.B.
        • Linder N.
        • Russig H.
        • Thöny B.
        • Mansuy I.M.
        Influence of early stress on social abilities and serotonergic functions across generations in mice.
        PLoS One. 2011; 6: e21842
        • Weiss I.C.
        • Franklin T.B.
        • Vizi S.
        • Mansuy I.M.
        Inheritable effect of unpredictable maternal separation on behavioral responses in mice.
        Front Behav Neurosci. 2011; (doi:10.3389/fnbeh.2011.00003)
        • Roth T.L.
        • Lubin F.D.
        • Funk A.J.
        • Sweatt J.D.
        Lasting epigenetic influence of early-life adversity on the BDNF gene.
        Biol Psychiatry. 2009; 65: 760-769
        • Morgan C.P.
        • Bale T.L.
        Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage.
        J Neurosci. 2011; 31: 11748-11755
        • Dietz D.M.
        • LaPlant Q.
        • Watts E.L.
        • Hodes G.E.
        • Russo S.J.
        • Feng J.
        • et al.
        Paternal transmission of stress-induced pathologies.
        Biol Psychiatry. 2011; 70: 408-414
        • Skinner M.K.
        • Anway MD.
        • Savenkova M.I.
        • Gore A.C.
        • Crews D.
        Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior.
        PLoS One. 2008; 3: e3745
        • Crews D.
        • Gillette R.
        • Scarpino S.V.
        • Manikkam M.
        • Savenkova M.I.
        • Skinner M.K.
        Epigenetic transgenerational inheritance of altered stress responses.
        Proc Natl Acad Sci. 2012; 109: 9143-9148
        • Stouder C.
        • Paoloni-Giacobino A.
        Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm.
        Reproduction. 2010; 139: 373-379
        • Wolstenholme J.T.
        • Edwards M.
        • Shetty S.R.J.
        • Gatewood J.D.
        • Taylor J.A.
        • Rissman E.F.
        • et al.
        Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression.
        Endocrinology. 2012; 153: 3828-3838
        • Sato K.
        • Fukata H.
        • Kogo Y.
        • Ohgane J.
        • Shiota K.
        • Mori C.
        Neonatal exposure to diethylstilbestrol alters expression of dna methyltransferases and methylation of genomic DNA in the mouse uterus.
        Endocr J. 2009; 56: 131-139
        • Walker BE.
        Tumors of female offspring of mice exposed prenatally to diethylstilbestrol.
        J Natl Cancer Inst. 1984; 73: 133-140
        • Newbold R.R.
        • Padilla-Banks E.
        • Jefferson W.N.
        Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations.
        Endocrinology. 2006; 147: s11-s17
        • Bromer J.G.
        • Wu J.
        • Zhou Y.
        • Taylor H.S.
        Hypermethylation of Homeobox A10 by in utero diethylstilbestrol exposure: An epigenetic mechanism for altered developmental programming.
        Endocrinology. 2009; 150: 3376-3382
        • Li S.
        • Washburn K.A.
        • Moore R.
        • Uno T.
        • Teng C.
        • Newbold R.R.
        • et al.
        Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus.
        Cancer Res. 1997; 57: 4356-4359
        • Bruner-Tran K.L.
        • Osteen K.G.
        Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations.
        Reprod Toxicol. 2011; 31: 344-350
        • Simpson J.
        • Kelly J.P.
        The impact of environmental enrichment in laboratory rats: Behavioural and neurochemical aspects.
        Behav Brain Res. 2011; 222: 246-264
        • Nithianantharajah J.
        • Hannan A.J.
        Enriched environments, experience-dependent plasticity and disorders of the nervous system.
        Nat Rev Neurosci. 2006; 7: 697-709
        • Arai J.A.
        • Li S.
        • Hartley D.M.
        • Feig L.A.
        Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment.
        J Neurosci. 2009; 29: 1496-1502
        • Rassoulzadegan M.
        • Grandjean V.
        • Gounon P.
        • Vincent S.
        • Gillot I.
        • Cuzin F.
        RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse.
        Nature. 2006; 441: 469-474
        • Wagner K.D.
        • Wagner N.
        • Ghanbarian H.
        • Grandjean V.
        • Gounon P.
        • Cuzin F.
        • et al.
        RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse.
        Dev Cell. 2008; 14: 962-969
        • Harper L.V.
        Epigenetic inheritance and the intergenerational transfer of experience.
        Psychol Bull. 2005; 131: 340-360
        • Gluckman P.D.
        • Hanson M.A.
        • Bateson P.
        • Beedle A.S.
        • Law C.M.
        • Bhutta Z.A.
        • et al.
        Towards a new developmental synthesis: Adaptive developmental plasticity and human disease.
        Lancet. 2009; 373: 1654-1657
        • Hales C.
        • Barker D.
        Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis.
        Diabetologia. 1992; 35: 595-601
        • Brunner A.M.
        • Tweedie-Cullen R..Y.
        • Mansuy I.M.
        Epigenetic modifications of the neuroproteome.
        Proteomics. 2012; 12: 2404-2420
        • Rodriguez-Paredes M.
        • Esteller M.
        Cancer epigenetics reaches mainstream oncology.
        Nat Med. 2011; : 330-339
        • Covington III, H.E.
        • Maze I.
        • LaPlant Q.C.
        • Vialou V.F.
        • Ohnishi Y..N.
        • Berton O.
        • et al.
        Antidepressant actions of histone deacetylase inhibitors.
        J Neurosci. 2009; 29: 11451-11460
        • Graff J.
        • Rei D.
        • Guan J.-S.
        • Wang W.-Y.
        • Seo J.
        • Hennig K.M.
        • et al.
        An epigenetic blockade of cognitive functions in the neurodegenerating brain.
        Nature. 2012; 483: 222-226
        • Narayan P.
        • Dragunow M.
        Pharmacology of epigenetics in brain disorders.
        Br J Pharmacol. 2010; 159: 285-303
        • Arrowsmith C.H.
        • Bountra C.
        • Fish P.V.
        • Lee K.
        • Schapira M.
        Epigenetic protein families: A new frontier for drug discovery.
        Nat Rev Drug Discov. 2012; 11: 384-400