Advertisement

Mechanisms of Rapid Antidepressant Effects of Sleep Deprivation Therapy: Clock Genes and Circadian Rhythms

      A significant subset of both major depressive disorder and bipolar disorder patients rapidly (within 24 hours) and robustly improves with the chronotherapeutic intervention of sleep deprivation therapy (SDT). Major mood disorder patients are reported to have abnormal circadian rhythms including temperature, hormonal secretion, mood, and particularly sleep. These rhythms are modulated by the clock gene machinery and its products. It is hypothesized that SDT resets abnormal clock gene machinery, that relapse of depressive symptoms during recovery night sleep reactivates abnormal clock gene machinery, and that supplemental chronotherapies and medications can block relapse and help stabilize circadian-related improvement. The central circadian clock genes, BMAL1/CLOCK (NPAS2), bind to Enhancer Boxes to initiate the transcription of circadian genes, including the period genes (per1, per2, per3). It is suggested that a defect in BMAL1/CLOCK (NPAS2) or in the Enhancer Box binding contributes to altered circadian function associated, in part, with the period genes. The fact that chronotherapies, including SDT and sleep phase advance, are dramatically effective suggests that altered clock gene machinery may represent a core pathophysiological defect in a subset of mood disorder patients.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schulte W.
        Kombinierte psycho- und pharmalotherapie bei Melancholikern.
        in: Kranz HN P. Probleme der Pharmackopsychiatrischen Kombinations- und Langzeitbehandlung. Karger, Basel, Switzerland1966
        • Pflug B.
        • Tolle R.
        Disturbance of the 24-hour rhythm in endogenous depression and the treatment of endogenous depression by sleep deprivation.
        Int Pharmacopsychiatry. 1971; 6: 187-196
        • Benedetti F.
        • Barbini B.
        • Colombo C.
        • Smeraldi E.
        Chronotherapeutics in a psychiatric ward.
        Sleep Med Rev. 2007; 11: 509-522
        • Wu J.C.
        • Bunney W.E.
        The biological basis of an antidepressant response to sleep deprivation and relapse: Review and hypothesis.
        Am J Psychiatry. 1990; 147: 14-21
        • Wirz-Justice A.
        • Benedetti F.
        • Terman M.
        Chronotherapeutics for Affective Disorders: A Clinician's Manual for Light and Wake Therapy.
        Karger, Basel, Switzerland2009
        • Vandekerckhove M.
        • Cluydts R.
        The emotional brain and sleep: An intimate relationship.
        Sleep Med Rev. 2010; 14: 219-226
        • Wu J.C.
        • Kelsoe J.R.
        • Schachat C.
        • Bunney B.G.
        • DeModena A.
        • Golshan S.
        • et al.
        Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder.
        Biol Psychiatry. 2009; 66: 298-301
        • Bunney B.G.
        • Bunney W.E.
        Rapid-acting antidepressant strategies: Mechanisms of action.
        Int J Neuropsychopharmacol. 2012; 15: 695-713
        • Benedetti F.
        • Colombo C.
        Sleep deprivation in mood disorders.
        Neuropsychobiology. 2011; 64: 141-151
        • Bunney Jr, W.E.
        • Murphy D.L.
        • Goodwin F.K.
        • Borge G.F.
        The “switch process” in manic-depressive illness. I.A systematic study of sequential behavioral changes.
        Arch Gen Psychiatry. 1972; 27: 295-302
        • Sitaram N.
        • Gillin J.G.
        • Bunney Jr, W.E.
        Circadian variation in the time of “switch” of a patient with 48-hour manic-depressive cycles.
        Biol Psychiatry. 1978; 13: 567-574
        • Wirz-Justice A.
        Diurnal variation of depressive symptoms.
        Dialogues Clin Neurosci. 2008; 10: 337-343
        • Wehr T.A.
        • Sack D.
        • Rosenthal N.
        • Duncan W.
        • Gillin J.C.
        Circadian rhythm disturbances in manic-depressive illness.
        Fed Proc. 1983; 42: 2809-2814
        • Morris D.W.
        • Trivedi M.H.
        • Fava M.
        • Wisniewski S.R.
        • Balasubramani G.K.
        • Khan A.Y.
        • et al.
        Diurnal mood variation in outpatients with major depressive disorder.
        Depress Anxiety. 2009; 26: 851-863
        • Haug H.J.
        Prediction of sleep deprivation outcome by diurnal variation of mood.
        Biol Psychiatry. 1992; 31: 271-278
        • Riemann D.
        • Wiegand M.
        • Berger M.
        Are there predictors for sleep deprivation response in depressed patients?.
        Biol Psychiatry. 1991; 29: 707-710
        • Mendlewicz J.
        Sleep disturbances: Core symptoms of major depressive disorder rather than associated or comorbid disorders.
        World J Biol Psychiatry. 2009; 10: 269-275
        • Duncan Jr, W.C.
        Circadian rhythms and the pharmacology of affective illness.
        Pharmacol Ther. 1996; 71: 253-312
        • Kupfer D.J.
        REM latency: A psychobiologic marker for primary depressive disease.
        Biol Psychiatry. 1976; 11: 159-174
        • O'Brien E.M.
        • Chelminski I.
        • Young D.
        • Dalrymple K.
        • Hrabosky J.
        • Zimmerman M.
        Severe insomnia is associated with more severe presentation and greater functional deficits in depression.
        J Psychiatr Res. 2011; 45: 1101-1105
        • Krakow B.
        • Ribeiro J.D.
        • Ulibarri V.A.
        • Krakow J.
        • Joiner Jr, T.E.
        Sleep disturbances and suicidal ideation in sleep medical center patients.
        J Affect Disord. 2011; 131: 422-427
        • Troxel W.M.
        • Kupfer D.J.
        • Reynolds 3rd, C.F.
        • Frank E.
        • Thase M.E.
        • Miewald J.M.
        • Buysse D.J.
        Insomnia and objectively measured sleep disturbances predict treatment outcome in depressed patients treated with psychotherapy or psychotherapy-pharmacotherapy combinations.
        J Clin Psychiatry. 2012; 73: 478-485
        • Gupta R.
        • Lahan V.
        Insomnia associated with depressive disorder: Primary, secondary, or mixed?.
        Indian J Psychol Med. 2011; 33: 123-128
        • Baglioni C.
        • Battagliese G.
        • Feige B.
        • Spiegelhalder K.
        • Nissen C.
        • Voderholzer U.
        • et al.
        Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies.
        J Affect Disord. 2011; 135: 10-19
        • Carpenter Jr, W.T.
        • Bunney Jr, W.E.
        Adrenal cortical activity in depressive illness.
        Am J Psychiatry. 1971; 128: 31-40
        • Nemeroff C.B.
        The corticotropin-releasing factor (CRF) hypothesis of depression: New findings and new directions.
        Mol Psychiatry. 1996; 1: 336-342
        • Bao A.M.
        • Meynen G.
        • Swaab D.F.
        The stress system in depression and neurodegeneration: Focus on the human hypothalamus.
        Brain Res Rev. 2008; 57: 531-553
        • Scharnholz B.
        • Lederbogen F.
        • Feuerhack A.
        • Bach A.
        • Kopf D.
        • Frankhauser P.
        • et al.
        Does night-time cortisol excretion normalize in the long-term course of depression?.
        Pharmacopsychiatry. 2010; 43: 161-165
        • Souetre E.
        • Salvati E.
        • Wehr T.A.
        • Sack D.A.
        • Krebs B.
        • Darcourt G.
        Twenty-four-hour profiles of body temperature and plasma TSH in bipolar patients during depression and during remission and in normal control subjects.
        Am J Psychiatry. 1988; 145: 1133-1137
        • Avery D.H.
        • Shah S.H.
        • Eder D.N.
        • Wildschiodtz G.
        Nocturnal sweating and temperature in depression.
        Acta Psychiatr Scand. 1999; 100: 295-301
        • Duncan Jr, W.C.
        • Gillin J.C.
        • Post R.M.
        • Gerner R.H.
        • Wehr T.A.
        Relationship between EEG sleep patterns and clinical improvement in depressed patients treated with sleep deprivation.
        Biol Psychiatry. 1980; 15: 879-889
        • Elsenga S.
        • Van den Hoofdakker R.H.
        Body core temperature and depression during total sleep deprivation in depressives.
        Biol Psychiatry. 1988; 24: 531-540
        • Hasler B.P.
        • Buysse D.J.
        • Kupfer D.J.
        • Germain A.
        Phase relationships between core body temperature, melatonin, and sleep are associated with depression severity: Further evidence for circadian misalignment in non-seasonal depression.
        Psychiatry Res. 2010; 178: 205-207
        • Mohawk J.A.
        • Green C.B.
        • Takahashi J.S.
        Central and peripheral circadian clocks in mammals.
        Annu Rev Neurosci. 2012; 35: 445-462
        • Zhang E.E.
        • Kay S.A.
        Clocks not winding down: Unravelling circadian networks.
        Nature Reviews Mol Cell Biol. 2010; 11: 764-776
        • Wright K.P.
        • Lowry C.A.
        • Lebourgeois M.K.
        Circadian and wakefulness-sleep modulation of cognition in humans.
        Front Mol Neurosci. 2012; 5: 50
        • Schmutz I.
        • Ripperger J.A.
        • Baeriswyl-Aebischer S.
        • Albrecht U.
        The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors.
        Genes Dev. 2010; 24: 345-357
        • Shi S.
        • Hida A.
        • McGuinness O.P.
        • Wasserman D.H.
        • Yamazaki S.
        • Johnson C.H.
        Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2.
        Curr Biol. 2010; 20: 316-321
        • Bunger M.K.
        • Wilsbacher L.D.
        • Moran S.M.
        • Clendenin C.
        • Radcliffe L.A.
        • Hogenesch J.B.
        • et al.
        Mop3 is an essential component of the master circadian pacemaker in mammals.
        Cell. 2000; 103: 1009-1017
        • Wisor J.P.
        • O'Hara B.F.
        • Terao A.
        • Selby C.P.
        • Kilduff T.S.
        • Sancar A.
        • et al.
        A role for cryptochromes in sleep regulation.
        BMC Neurosci. 2002; 3: 20
        • Wisor J.P.
        • Pasumarthi R.K.
        • Gerashchenko D.
        • Thompson C.L.
        • Pathak S.
        • Sancar A.
        • et al.
        Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains.
        J Neurosci. 2008; 28: 7193-7201
        • Mongrain V.
        • La Spada F.
        • Curie T.
        • Franken P.
        Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.
        PloS One. 2011; 6: e26622
        • Laposky A.
        • Easton A.
        • Dugovic C.
        • Walisser J.
        • Bradfield C.
        • Turek F.
        Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation.
        Sleep. 2005; 28: 395-409
        • Andreazza A.C.
        • Andersen M.L.
        • Alvarenga T.A.
        • de-Oliveira M.R.
        • Armani F.
        • Ruiz F.S.
        • et al.
        Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice.
        J Psychiatr Res. 2010; 44: 775-780
        • Cirelli C.
        Cellular consequences of sleep deprivation in the brain.
        Sleep Med Rev. 2006; 10: 307-321
        • Guzman-Marin R.
        • Ying Z.
        • Suntsova N.
        • Methippara M.
        • Bashir T.
        • Szymusiak R.
        • et al.
        Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats.
        J Physiol. 2006; 575: 807-819
        • Mueller A.D.
        • Pollock M.S.
        • Lieblich S.E.
        • Epp J.R.
        • Galea L.A.
        • Mistlberger R.E.
        Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones.
        Am J Physiol Regul Integr Comp Physiol. 2008; 294: R1693-R1703
        • Basheer R.
        • Bauer A.
        • Elmenhorst D.
        • Ramesh V.
        • McCarley R.W.
        Sleep deprivation upregulates A1 adenosine receptors in the rat basal forebrain.
        Neuroreport. 2007; 18: 1895-1899
        • Conti B.
        • Maier R.
        • Barr A.M.
        • Morale M.C.
        • Lu X.
        • Sanna P.P.
        • et al.
        Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine.
        Mol Psychiatry. 2007; 12: 167-189
        • Wirz-Justice A.
        • Tobler I.
        • Kafka M.S.
        • Naber D.
        • Marangos P.J.
        • Borbely A.A.
        • Wehr T.A.
        Sleep deprivation: Effects on circadian rhythms of rat brain neurotransmitter receptors.
        Psychiatry Res. 1981; 5: 67-76
        • Ressler K.J.
        • Nemeroff C.B.
        Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders.
        Depress Anxiety. 2000; 12: 2-19
        • Salomon R.M.
        • Delgado P.L.
        • Licinio J.
        • Krystal J.H.
        • Heninger G.R.
        • Charney D.S.
        Effects of sleep deprivation on serotonin function in depression.
        Biol Psychiatry. 1994; 36: 840-846
        • Grossman G.H.
        • Mistlberger R.E.
        • Antle M.C.
        • Ehlen J.C.
        • Glass J.D.
        Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus.
        Neuroreport. 2000; 11: 1929-1932
        • Zant J.C.
        • Leenaars C.H.
        • Kostin A.
        • Van Someren E.J.
        • Porkka-Heiskanen T.
        Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation.
        Brain Res. 2011; 1399: 40-48
        • Benedetti F.
        • Serretti A.
        • Colombo C.
        • Campori E.
        • Barbini B.
        • di Bella D.
        • Smeraldi E.
        Influence of a functional polymorphism within the promoter of the serotonin transporter gene on the effects of total sleep deprivation in bipolar depression.
        Am J Psychiatry. 1999; 156: 1450-1452
        • Baghai T.C.
        • Schule C.
        • Zwanzger P.
        • Zill P.
        • Ella R.
        • Eser D.
        • et al.
        No Influence of a functional polymorphism within the serotonin transporter gene on partial sleep deprivation in major depression.
        World J Biol Psychiatry. 2003; 4: 111-114
        • Franken P.
        • Dijk D.J.
        Circadian clock genes and sleep homeostasis.
        Eur J Neurosci. 2009; 29: 1820-1829
        • Borbely A.A.
        A two process model of sleep regulation.
        Hum Neurobiol. 1982; 1: 195-204
        • Jedidi Z.
        • Rikir E.
        • Muto V.
        • Mascetti L.
        • Kusse C.
        • Foret A.
        • et al.
        Functional neuroimaging of the reciprocal influences between sleep and wakefulness.
        Pflugers Arch. 2012; 463: 103-109
        • Vandewalle G.
        • Archer S.N.
        • Wuillaume C.
        • Balteau E.
        • Degueldre C.
        • Luxen A.
        • et al.
        Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype.
        J Neurosci. 2009; 29: 7948-7956
        • Carpen J.D.
        • von Schantz M.
        • Smits M.
        • Skene D.J.
        • Archer S.N.
        A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans.
        J Hum Genet. 2006; 51: 1122-1125
        • Carpen J.D.
        • Archer S.N.
        • Skene D.J.
        • Smits M.
        • von Schantz M.
        A single-nucleotide polymorphism in the 5'-untranslated region of the hPER2 gene is associated with diurnal preference.
        J Sleep Res. 2005; 14: 293-297
        • Toh K.L.
        • Jones C.R.
        • He Y.
        • Eide E.J.
        • Hinz W.A.
        • Virshup D.M.
        • et al.
        An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.
        Science. 2001; 291: 1040-1043
        • Jones C.R.
        • Campbell S.S.
        • Zone S.E.
        • Cooper F.
        • DeSano A.
        • Murphy P.J.
        • et al.
        Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans.
        Nat Med. 1999; 5: 1062-1065
        • Ebisawa T.
        • Uchiyama M.
        • Kajimura N.
        • Mishima K.
        • Kamei Y.
        • Katoh M.
        • et al.
        Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome.
        EMBO Rep. 2001; 2: 342-346
        • Soria V.
        • Martinez-Amoros E.
        • Escaramis G.
        • Valero J.
        • Perez-Egea R.
        • Garcia C.
        • et al.
        Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder.
        Neuropsychopharmacology. 2010; 35: 1279-1289
        • McCarthy M.J.
        • Nievergelt C.M.
        • Kelsoe J.R.
        • Welsh D.K.
        A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response.
        PloS One. 2012; 7: e32091
        • Partonen T.
        Clock gene variants in mood and anxiety disorders [published online ahead of print April 27].
        J Neural Transm. 2012;
        • Kavcic P.
        • Rojc B.
        • Dolenc-Groselj L.
        • Claustrat B.
        • Fujs K.
        • Poljak M.
        The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans.
        Croat Med J. 2011; 52: 594-603
        • Lavebratt C.
        • Sjoholm L.K.
        • Soronen P.
        • Paunio T.
        • Vawter M.P.
        • Bunney W.E.
        • et al.
        CRY2 is associated with depression.
        PloS One. 2010; 5: e9407
        • Goichot B.
        • Weibel L.
        • Chapotot F.
        • Gronfier C.
        • Piquard F.
        • Brandenberger G.
        Effect of the shift of the sleep-wake cycle on three robust endocrine markers of the circadian clock.
        Am J Physiol. 1998; 275: E243-E248
        • Minors D.
        • Waterhouse J.
        • Akerstedt T.
        • Atkinson G.
        • Folkard S.
        Effect of sleep loss on core temperature when movement is controlled.
        Ergonomics. 1999; 42: 647-656
        • Franken P.
        • Thomason R.
        • Heller H.C.
        • O'Hara B.F.
        A non-circadian role for clock-genes in sleep homeostasis: A strain comparison.
        BMC Neurosci. 2007; 8: 87
        • Thompson C.L.
        • Wisor J.P.
        • Lee C.K.
        • Pathak S.D.
        • Gerashchenko D.
        • Smith K.A.
        • et al.
        Molecular and anatomical signatures of sleep deprivation in the mouse brain.
        Front Neurosci. 2010; 4: 165
        • Davis C.J.
        • Bohnet S.G.
        • Meyerson J.M.
        • Krueger J.M.
        Sleep loss changes microRNA levels in the brain: A possible mechanism for state-dependent translational regulation.
        Neurosci Lett. 2007; 422: 68-73
        • Wiegand M.
        • Riemann D.
        • Schreiber W.
        • Lauer C.J.
        • Berger M.
        Effect of morning and afternoon naps on mood after total sleep deprivation in patients with major depression.
        Biol Psychiatry. 1993; 33: 467-476
        • Riemann D.
        • Wiegand M.
        • Lauer C.J.
        • Berger M.
        Naps after total sleep deprivation in depressed patients: Are they depressiogenic?.
        Psychiatry Res. 1993; 49: 109-120
        • Roy-Byrne P.P.
        • Uhde T.W.
        • Post R.M.
        Antidepressant effects of one night's sleep deprivation: Clinical and theoretical implications.
        in: Post R.M. Ballenger J.C. Neurobiology of Mood Disorders. Williams and Wilkins, Baltimore1984
        • Baxter Jr, L.R.
        Can lithium carbonate prolong the antidepressant effect of sleep deprivation?.
        Arch Gen Psychiatry. 1985; 42: 635
        • Echizenya M.
        [Chronotherapy can be a useful adjunctive therapy in treatment-resistant depression].
        Seishin Shinkeigaku Zasshi. 2012; 114: 151-157
        • Benedetti F.
        • Barbini B.
        • Fulgosi M.C.
        • Colombo C.
        • Dallaspezia S.
        • Pontiggia A.
        • Smeraldi E.
        Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: Acute response and long-term remission rates.
        J Clin Psychiatry. 2005; 66: 1535-1540
        • Voderholzer U.
        • Valerius G.
        • Schaerer L.
        • Riemann D.
        • Giedke H.
        • Schwarzler F.
        • et al.
        Is the antidepressive effect of sleep deprivation stabilized by a three day phase advance of the sleep period? A pilot study.
        European Arch Psychiatry Clin Neurosci. 2003; 253: 68-72
        • Albert R.
        • Merz A.
        • Schubert J.
        • Ebert D.
        [Sleep deprivation and subsequent sleep phase advance stabilizes the positive effect of sleep deprivation in depressive episodes].
        Nervenarzt. 1998; 69: 66-69
        • Wirz-Justice A.
        • Benedetti F.
        • Berger M.
        • Lam R.W.
        • Martiny K.
        • Terman M.
        • Wu J.C.
        Chronotherapeutics (light and wake therapy) in affective disorders.
        Psychol Med. 2005; 35: 939-944
        • Lewy A.J.
        • Sack R.L.
        • Singer C.M.
        Melatonin, light and chronobiological disorders.
        Ciba Found Symp. 1985; 117: 231-252
        • Kaladchibachi S.A.
        • Doble B.
        • Anthopoulos N.
        • Woodgett J.R.
        • Manoukian A.S.
        Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: A molecular link in the therapeutic action of lithium.
        J Circadian Rhythms. 2007; 5: 3
        • Zarate Jr, C.A.
        • Singh J.
        • Manji H.K.
        Cellular plasticity cascades: Targets for the development of novel therapeutics for bipolar disorder.
        Biol Psychiatry. 2006; 59: 1006-1020
        • Li J.
        • Lu W.Q.
        • Beesley S.
        • Loudon A.S.
        • Meng Q.J.
        Lithium impacts on the amplitude and period of the molecular circadian clockwork.
        PloS One. 2012; 7: e33292
        • Campbell S.S.
        • Gillin J.C.
        • Kripke D.F.
        • Janowsky D.S.
        • Risch S.C.
        Lithium delays circadian phase of temperature and REM sleep in a bipolar depressive: A case report.
        Psychiatry Res. 1989; 27: 23-29
        • Johnsson A.
        • Engelmann W.
        • Pflug B.
        • Klemke W.
        Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders.
        Int J Chronobiol. 1983; 8: 129-147
        • Benedetti F.
        • Barbini B.
        • Campori E.
        • Fulgosi M.C.
        • Pontiggia A.
        • Colombo C.
        Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: New findings supporting the internal coincidence model?.
        J Psychiatr Res. 2001; 35: 323-329
        • Best J.D.
        • Maywood E.S.
        • Smith K.L.
        • Hastings M.H.
        Rapid resetting of the mammalian circadian clock.
        J Neurosci. 1999; 19: 828-835
        • Maywood E.S.
        • Mrosovsky N.
        • Field M.D.
        • Hastings M.H.
        Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock.
        Proc Natl Acad Sci U S A. 1999; 96: 15211-15216
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • Krystal J.H.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Zarate Jr, C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Bellet M.M.
        • Vawter M.P.
        • Bunney B.G.
        • Bunney W.E.
        • Sassone-Corsi P.
        Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.
        PloS One. 2011; 6: e23982
        • Benedetti F.
        • Dallaspezia S.
        • Fulgosi M.C.
        • Barbini B.
        • Colombo C.
        • Smeraldi E.
        Phase advance is an actimetric correlate of antidepressant response to sleep deprivation and light therapy in bipolar depression.
        Chronobiol Int. 2007; 24: 921-937
        • Wehr T.A.
        • Wirz-Justice A.
        • Goodwin F.K.
        • Duncan W.
        • Gillin J.C.
        Phase advance of the circadian sleep-wake cycle as an antidepressant.
        Science. 1979; 206: 710-713
        • Lewy A.J.
        Depressive disorders may more commonly be related to circadian phase delays rather than advances: Time will tell.
        Sleep Med. 2010; 11: 117-118
        • Chen R.
        • Seo D.O.
        • Bell E.
        • von Gall C.
        • Lee C.
        Strong resetting of the mammalian clock by constant light followed by constant darkness.
        J Neurosci. 2008; 28: 11839-11847