The Potential Role of the Striatum in Antisocial Behavior and Psychopathy

  • Andrea L. Glenn
    Address correspondence to Andrea L. Glenn, Ph.D., Department of Child and Adolescent Psychiatry, Institute of Mental Health, 3 Second Hospital Avenue #03-01, Health Promotion Board Building, Singapore 168937
    Department of Child and Adolescent Psychiatry, Institute of Mental Health, Singapore
    Search for articles by this author
  • Yaling Yang
    Department of Neurology, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
      In this review, we examine the functions of the striatum and the evidence that this brain region may be compromised in antisocial individuals. The striatum is involved in the processing of reward-related information and is thus important in reward-based learning. We review evidence from a growing number of brain imaging studies that have identified differences in the structure or functioning of the striatum either in antisocial groups or in relation to personality traits that are associated with antisocial behavior such as impulsivity and novelty seeking. Evidence from structural imaging studies suggests that the volume of the striatum is increased in antisocial populations, although evidence of localization to specific subregions is inconsistent. Functional imaging studies, which similarly tend to find increased functioning in the striatum, suggest that the striatum is not necessarily hypersensitive to the receipt of reward in antisocial individuals but instead may not be appropriately processing the absence of a reward, resulting in continuous responding to a stimulus that is no longer rewarding. This may impair the ability of individuals to flexibly respond to the environment, thus contributing to impulsivity and antisocial behavior. We conclude by discussing genetic and environmental factors that may affect the development of the striatum.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wallace J.F.
        • Malterer M.B.
        • Newman J.P.
        Mapping Gray's BIS and BAS constructs onto Factor 1 and Factor 2 of Hare's Psychopathy Checklist–Revised.
        Pers Individ Diff. 2009; 47: 812-816
        • Hare R.D.
        Hare Psychopathy Checklist–Revised (PCL-R).
        2nd ed. Multi-Health Systems, Inc, Toronto2003
        • Koob G.F.
        The role of the striatopallidal and extended amygdala systems in drug addiction.
        Ann N Y Acad Sci. 2001; 877: 445-460
        • Devan B.D.
        • Hong N.S.
        • McDonald R.J.
        Parallel associative processing in the dorsal striatum: segregation of stimulus-response and cognitive control subregions.
        Neurobiol Learn Mem. 2011; 96: 95-120
        • Patterson C.M.
        • Newman J.P.
        Reflectivity and learning from aversive events: toward a psychological mechanism for the syndromes of disinhibition.
        Psychol Rev. 1993; 100: 716-736
        • Berridge K.C.
        • Robinson T.E.
        Parsing reward.
        Trends Neurosci. 2003; 26: 507-513
        • Wise R.A.
        Dopamine, learning and motivation.
        Nat Rev Neurosci. 2004; 5: 483-494
        • Harsay H.A.
        • Cohen M.X.
        • Oosterhof N.N.
        • Forstmann B.U.
        • Mars R.B.
        • Ridderinkhof K.R.
        Functional connectivity of the striatum links motivation to action control in humans.
        J Neurosci. 2011; 31: 10701-10711
        • O'Doherty J.
        Reward representations and reward-related learning in the human brain: insights from neuroimaging.
        Curr Opin Neurobiol. 2004; 14: 769-776
        • Jensen J.
        • McIntosh A.R.
        • Crawley A.P.
        • Mikulis D.J.
        • Remington G.
        • Kapur S.
        Direct activation of the ventral striatum in anticipation of aversive stimuli.
        Neuron. 2003; 40: 1251-1257
        • Zink C.F.
        • Pagnoni G.
        • Martin-Skurski M.E.
        • Chappelow J.C.
        • Berns G.S.
        Human striatal responses to monetary reward depend on saliency.
        Neuron. 2004; 42: 509-517
        • Tiihonen J.
        • Kuikka J.
        • Bergstrom K.
        • Hakola P.
        • Karhu J.
        • Ryynanen O.P.
        • et al.
        Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics.
        Nat Med. 1995; 1: 654-657
        • Amen D.G.
        • Stubblefield M.
        • Carmichael B.
        • Thisted R.
        Brain SPECT findings and aggressiveness.
        Ann Clin Psychiatry. 1996; 8: 129-137
        • Soderstrom H.
        • Hultin L.
        • Tullberg M.
        • Wikkelso C.
        • Ekholm S.
        • Forsman A.
        Reduced frontotemporal perfusion in psychopathic personality.
        Psychiatry Res. 2002; 114: 81-94
        • Vollm B.
        • Richardson P.
        • McKie S.
        • Elliott R.
        • Dolan M.
        • Deakin B.
        Neuronal correlates of reward and loss in Cluster B personality disorders: a functional magnetic resonance imaging study.
        Psychiatry Res. 2007; 156: 151-167
        • Gatzke-Kopp L.M.
        • Beauchaine T.P.
        • Shannon K.E.
        • Chipman J.
        • Fleming A.P.
        • Crowell S.E.
        • et al.
        Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders.
        J Abnorm Psychol. 2009; 118: 203-213
        • Finger E.C.
        • Marsh A.A.
        • Mitchell D.G.
        • Reid M.E.
        • Sims C.
        • Budhani S.
        • et al.
        Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning.
        Arch Gen Psychiatry. 2008; 65: 586-594
        • Ávila C.
        • Garbin G.
        • Sanjuán A.
        • Forn C.
        • Barrós-Loscertales A.
        • Bustamante J.C.
        • et al.
        Frontostriatal response to set switching is moderated by reward sensitivity.
        Soc Cogn Affect Neurosci. 2012; 7: 423-430
        • Budhani S.
        • Blair R.J.
        Response reversal and children with psychopathic tendencies: success is a function of salience of contingency change.
        J Child Psychol Psychiatry. 2005; 46: 972-981
        • Finger E.C.
        • Marsh A.A.
        • Blair K.S.
        • Reid M.E.
        • Sims C.
        • Ng P.
        • et al.
        Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits.
        Am J Psychiatry. 2011; 168: 152-162
        • Gray J.A.
        The Neuropsychology of Anxiety.
        Oxford University Press, New York1982
        • Hahn T.
        • Dresler T.
        • Ehlis A.C.
        • Pyka M.
        • Dieler A.C.
        • Saathoff C.
        • et al.
        Randomness of resting-state brain oscillations encodes Gray's personality trait.
        Neuroimage. 2012; 59: 1842-1845
        • Carver C.S.
        • White T.L.
        Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment—the BIS BAS Scales.
        J Personal Soc Psychol. 1994; 67: 319-333
        • Torrubia R.
        • Avila C.
        • Molto J.
        • Caseras X.
        The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and impulsivity dimensions.
        Personal Individ Diff. 2001; 31: 837-862
        • Beaver J.D.
        • Lawrence A.D.
        • Van Ditzhuijzen J.
        • Davis M.H.
        • Woods A.
        • Calder A.J.
        Individual differences in reward drive predict neural responses to images of food.
        J Neurosci. 2006; 26: 5160-5166
        • Hahn T.
        • Dresler T.
        • Ehlis A.C.
        • Plichta M.M.
        • Heinzel S.
        • Polak T.
        • et al.
        Neural response to reward anticipation is modulated by Gray's impulsivity.
        Neuroimage. 2009; 46: 1148-1153
        • Hahn T.
        • Heinzel S.
        • Dresler T.
        • Plichta M.M.
        • Renner T.J.
        • Markulin F.
        • et al.
        Association between reward-related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype.
        Hum Brain Mapp. 2011; 32: 1557-1565
        • Simon J.J.
        • Walther S.
        • Fiebach C.J.
        • Friederich H.C.
        • Stippich C.
        • Weisbrod M.
        • et al.
        Neural reward processing is modulated by approach- and avoidance-related personality traits.
        Neuroimage. 2010; 49: 1868-1874
        • Forbes E.E.
        • Brown S.M.
        • Kimak M.
        • Ferrell R.E.
        • Manuck S.B.
        • Hariri A.R.
        Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity.
        Mol Psychiatry. 2009; 14: 60-70
        • Lai M.C.
        • Lombardo M.V.
        • Chakrabarti B.
        • Sadek S.A.
        • Pasco G.
        • Wheelwright S.J.
        • et al.
        A shift to randomness of brain oscillations in people with autism.
        Biol Psychiatry. 2010; 68: 1092-1099
        • Avila C.
        Distinguishing BIS-mediated and BAS-mediated disinhibition mechanisms: a comparison of disinhibition models of Gray (1981,1987) and of Patterson and Newman (1993).
        J Pers Soc Psychol. 2001; 80: 311-324
        • Buckholtz J.W.
        • Treadway M.T.
        • Cowan R.L.
        • Woodward N.D.
        • Benning S.D.
        • Li R.
        • et al.
        Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits.
        Nat Neurosci. 2010; 13: 419-421
        • Kiehl K.A.
        • Smith A.M.
        • Hare R.D.
        • Mendrek A.
        • Forster B.B.
        • Brink J.
        Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging.
        Biol Psychiatry. 2001; 50: 677-684
        • Decety J.
        • Michalska K.J.
        • Akitsuki Y.
        • Lahey B.B.
        Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation.
        Biol Psychology. 2009; 80: 203-211
        • Maguire E.A.
        • Gadian D.G.
        • Johnsrude I.S.
        • Good C.D.
        • Ashburner J.
        • Frackowiak R.S.J.
        • et al.
        Navigation-related structural change in the hippocampi of taxi drivers.
        Proc Natl Acad Sci U S A. 2000; 97: 4398-4403
        • Barkataki I.
        • Kumari V.
        • Das M.
        • Taylor P.
        • Sharma T.
        Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder.
        Behav Brain Res. 2006; 169: 239-247
        • Schiffer B.
        • Muller B.W.
        • Scherbaum N.
        • Hodgins S.
        • Forsting M.
        • Wiltfang J.
        • et al.
        Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders.
        Arch Gen Psychiatry. 2011; 68: 1039-1049
        • Ducharme S.
        • Hudziak J.J.
        • Botteron K.N.
        • Ganjavi H.
        • Lepage C.
        • Collins D.L.
        • et al.
        Right anterior cingulate cortical thickness and bilateral striatal volume correlate with Child Behavior Checklist aggressive behavior scores in healthy children.
        Biol Psychiatry. 2011; 70: 283-290
        • Hart S.
        • Cox D.
        • Hare R.D.
        The Hare Psychopathy Checklist: Screening Version.
        Multi-Health Systems, Toronto, Ontario, Canada1995
        • Glenn A.L.
        • Raine A.
        • Yaralian P.S.
        • Yang Y.
        Increased volume of the striatum in psychopathic individuals.
        Biol Psychiatry. 2010; 67: 52-58
        • Barros-Loscertales A.
        • Meseguer V.
        • Sanjuan A.
        • Belloch V.
        • Parcet M.A.
        • Torrubia R.
        • et al.
        Striatum gray matter reduction in males with an overactive behavioral activation system.
        Eur J Neurosci. 2006; 24: 2071-2074
        • Cohen M.X.
        • Schoene-Bake J.C.
        • Elger C.E.
        • Weber B.
        Connectivity-based segregation of the human striatum predicts personality characteristics.
        Nat Neurosci. 2009; 12: 32-34
        • Dreher J.C.
        • Kohn P.
        • Kolachana B.
        • Weinberger D.R.
        • Berman K.F.
        Variation in dopamine genes influences responsivity of the human reward system.
        Proc Natl Acad Sci U S A. 2009; 106: 617-622
        • Qiu A.
        • Rifkin-Graboi A.
        • Zhong J.
        • Phua D.Y.-L.
        • Lai Y.K.
        • Meaney M.J.
        Birth weight and gestation influence striatal morphology and motor response in normal six-year-old boys.
        Neuroimage. 2012; 59: 1065-1070
        • Muhammad A.
        • Hossain S.
        • Pellis S.M.
        • Kolb B.
        Tactile stimulation during development attenuates amphetamine sensitization and structurally reorganizes prefrontal cortex and striatum in a sex-dependent manner.
        Behav Neurosci. 2011; 125: 161-174
        • Kehoe P.
        • Shoemaker W.J.
        • Triano L.
        • Hoffman J.
        • Arons C.
        Repeated isolation in the neonatal rat produces alterations in behavior and ventral striatal dopamine release in the juvenile after amphetamine challenge.
        Behav Neurosci. 1996; 110: 1435-1444
        • Pokora M.J.
        • Richfield E.K.
        • Cory-Slechta D.A.
        Preferential vulnerability of nucleus accumbens dopamine binding sites to low-level lead exposure: time course of effects and interactions with chronic dopamine agonist treatments.
        J Neurochem. 1996; 67: 1540-1550
        • Darcheville J.C.
        • Riviere V.
        • Wearden J.H.
        Fixed-interval performance and self-control in infants.
        J Exp Anal Behav. 1993; 60: 239-254
        • Burke A.R.
        • Watt M.J.
        • Forster G.L.
        Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression.
        Neuroscience. 2011; 197: 269-279