Advertisement
Archival Report| Volume 72, ISSUE 8, P684-691, October 15, 2012

Altered Development of the Dorsolateral Prefrontal Cortex in Chromosome 22q11.2 Deletion Syndrome: An In Vivo Proton Spectroscopy Study

      Background

      Chromosome 22q11.2 deletion syndrome (22q11DS), the most common microdeletion in humans, is associated with multiple medical features, almost universal cognitive deficits, and a high risk of schizophrenia. The metabolic basis of the psychological/psychiatric features is not well understood. Volumetric brain imaging studies have shown that gray matter abnormalities in the dorsolateral prefrontal cortex (DLPFC), an area that is believed to be integral for higher neurocognition, as well as being involved in schizophrenia, are associated with the psychological manifestations. However, studies have not characterized any possible metabolite alterations within the DLPFC of children with 22q11DS and their correlations with the psychological findings.

      Methods

      We conducted a short echo time, single-voxel, in vivo proton spectroscopy study involving children with 22q11DS (n = 26) and matched control subjects (n = 23).

      Results

      Absolute N-acetylaspartate (NAA) levels from the DLPFC were significantly elevated in children with 22q11DS compared with control subjects and the elevations were associated with poor global functioning and higher rates of comorbid attention-deficit/hyperactivity disorder. Children with 22q11DS had a lack of an age-associated decrease in NAA levels, a trend seen in the control subjects. However, the results did not remain statistically significant after corrections for multiple comparisons were made.

      Conclusions

      These findings represent the first report of proton spectroscopy in children with 22q11DS. The elevated DLPFC NAA levels and the lack of decreasing trends in NAA with age in the 22q11DS group relative to control subjects suggest an alteration in cortical development. Also, such neuronal dysmaturation is associated with psychopathology in children with 22q11DS.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shprintzen R.J.
        Velocardiofacial syndrome.
        Otolaryngol Clin North Am. 2000; 33 (vi): 1217-1240
        • Shprintzen R.J.
        Velo-cardio-facial syndrome: 30 Years of study.
        Dev Disabil Res Rev. 2008; 14: 3-10
        • Golding-Kushner K.J.
        • Weller G.
        • Shprintzen R.J.
        Velo-cardio-facial syndrome: Language and psychological profiles.
        J Craniofac Genet Dev Biol. 1985; 5: 259-266
        • Lewandowski K.E.
        • Shashi V.
        • Berry P.M.
        • Kwapil T.R.
        Schizophrenic-like neurocognitive deficits in children and adolescents with 22q11 deletion syndrome.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144: 27-36
        • Swillen A.
        • Devriendt K.
        • Legius E.
        • Eyskens B.
        • Dumoulin M.
        • Gewillig M.
        • Fryns J.P.
        Intelligence and psychosocial adjustment in velocardiofacial syndrome: A study of 37 children and adolescents with VCFS.
        J Med Genet. 1997; 34: 453-458
        • Feinstein C.
        • Eliez S.
        • Blasey C.
        • Reiss A.L.
        Psychiatric disorders and behavioral problems in children with velocardiofacial syndrome: Usefulness as phenotypic indicators of schizophrenia risk.
        Biol Psychiatry. 2002; 51: 312-318
        • Swillen A.
        • Vogels A.
        • Devriendt K.
        • Fryns J.P.
        Chromosome 22q11 deletion syndrome: Update and review of the clinical features, cognitive-behavioral spectrum, and psychiatric complications.
        Am J Med Genet. 2000; 97: 128-135
        • Wang P.P.
        • Woodin M.F.
        • Kreps-Falk R.
        • Moss E.M.
        Research on behavioral phenotypes: Velocardiofacial syndrome (deletion 22q11.2).
        Dev Med Child Neurol. 2000; 42: 422-427
        • Murphy K.C.
        • Jones L.A.
        • Owen M.J.
        High rates of schizophrenia in adults with velo-cardio-facial syndrome.
        Arch Gen Psychiatry. 1999; 56: 940-945
        • Tan G.M.
        • Arnone D.
        • McIntosh A.M.
        • Ebmeier K.P.
        Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome).
        Schizophr Res. 2009; 115: 173-181
        • Liang P.
        • Wang Z.
        • Yang Y.
        • Jia X.
        • Li K.
        Functional disconnection and compensation in mild cognitive impairment: Evidence from DLPFC connectivity using resting-state fMRI.
        PLoS One. 2011; 6: e22153
        • van Veelen N.M.
        • Vink M.
        • Ramsey N.F.
        • Kahn R.S.
        Left dorsolateral prefrontal cortex dysfunction in medication-naive schizophrenia.
        Schizophr Res. 2010; 123: 22-29
        • Kates W.R.
        • Antshel K.
        • Willhite R.
        • Bessette B.A.
        • AbdulSabur N.
        • Higgins A.M.
        Gender-moderated dorsolateral prefrontal reductions in 22q11.2 Deletion Syndrome: Implications for risk for schizophrenia.
        Child Neuropsychol. 2005; 11: 73-85
        • Shashi V.
        • Kwapil T.R.
        • Kaczorowski J.
        • Berry M.N.
        • Santos C.S.
        • Howard T.D.
        • et al.
        Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome.
        Psychiatry Res. 2010; 181: 1-8
        • Eliez S.
        • Schmitt J.E.
        • White C.D.
        • Reiss A.L.
        Children and adolescents with velocardiofacial syndrome: A volumetric MRI study.
        Am J Psychiatry. 2000; 157: 409-415
        • Bourgeois J.P.
        • Rakic P.
        Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage.
        J Neurosci. 1993; 13: 2801-2820
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Pfefferbaum A.
        • Mathalon D.H.
        • Sullivan E.V.
        • Rawles J.M.
        • Zipursky R.B.
        • Lim K.O.
        A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood.
        Arch Neurol. 1994; 51: 874-887
        • Purves D.
        • White L.E.
        • Riddle D.R.
        Is neural development Darwinian?.
        Trends Neurosci. 1996; 19: 460-464
        • Rakic P.
        • Bourgeois J.P.
        • Eckenhoff M.F.
        • Zecevic N.
        • Goldman-Rakic P.S.
        Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex.
        Science. 1986; 232: 232-235
        • Birken D.L.
        • Oldendorf W.H.
        N-acetyl-L-aspartic acid: A literature review of a compound prominent in 1H-NMR spectroscopic studies of brain.
        Neurosci Biobehav Rev. 1989; 13: 23-31
        • Stanley J.A.
        In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders.
        Can J Psychiatry. 2002; 47: 315-326
        • Kreis R.
        • Ernst T.
        • Ross B.D.
        Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.
        Magn Reson Med. 1993; 30: 424-437
        • Pettegrew J.W.
        • Klunk W.E.
        • Panchalingam K.
        • McClure R.J.
        • Stanley J.A.
        Molecular insights into neurodevelopmental and neurodegenerative diseases.
        Brain Res Bull. 2000; 53: 455-469
        • Goldstein G.
        • Panchalingam K.
        • McClure R.J.
        • Stanley J.A.
        • Calhoun V.D.
        • Pearlson G.D.
        • Pettegrew J.W.
        Molecular neurodevelopment: An in vivo 31P-1H MRSI study.
        J Int Neuropsychol Soc. 2009; 15: 671-683
        • Horska A.
        • Kaufmann W.E.
        • Brant L.J.
        • Naidu S.
        • Harris J.C.
        • Barker P.B.
        In vivo quantitative proton MRSI study of brain development from childhood to adolescence.
        J Magn Reson Imaging. 2002; 15: 137-143
        • Stanley J.A.
        • Vemulapalli M.
        • Nutche J.
        • Montrose D.M.
        • Sweeney J.A.
        • Pettegrew J.W.
        • et al.
        Reduced N-acetyl-aspartate levels in schizophrenia patients with a younger onset age: A single-voxel 1H spectroscopy study.
        Schizophr Res. 2007; 93: 23-32
        • Huttenlocher P.R.
        • de Courten C.
        • Garey L.J.
        • Van der Loos H.
        Synaptogenesis in human visual cortex–evidence for synapse elimination during normal development.
        Neurosci Lett. 1982; 33: 247-252
        • Marsh R.
        • Gerber A.J.
        • Peterson B.S.
        Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders.
        J Am Acad Child Adolesc Psychiatry. 2008; 47: 1233-1251
        • Pouwels P.J.
        • Brockmann K.
        • Kruse B.
        • Wilken B.
        • Wick M.
        • Hanefeld F.
        • Frahm J.
        Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS.
        Pediatr Res. 1999; 46: 474-485
        • Perlov E.
        • Philipsen A.
        • Matthies S.
        • Drieling T.
        • Maier S.
        • Bubl E.
        • et al.
        Spectroscopic findings in attention-deficit/hyperactivity disorder: Review and meta-analysis.
        World J Biol Psychiatry. 2009; 10: 355-365
        • da Silva Alves F.
        • Boot E.
        • Schmitz N.
        • Nederveen A.
        • Vorstman J.
        • Lavini C.
        • et al.
        Proton magnetic resonance spectroscopy in 22q11 deletion syndrome.
        PLoS One. 2011; 6: e21685
        • Brugger S.
        • Davis J.M.
        • Leucht S.
        • Stone J.M.
        Proton magnetic resonance spectroscopy and illness stage in schizophrenia–a systematic review and meta-analysis.
        Biol Psychiatry. 2011; 69: 495-503
        • Keshavan M.S.
        • A J.
        • Pettegrew J.W.
        Magnetic resonance spectroscopy in schizophrenia: Methodological issues and findings–part II.
        Biol Psychiatry. 2000; 48: 369-380
        • Jessen F.
        • Scherk H.
        • Traber F.
        • Theyson S.
        • Berning J.
        • Tepest R.
        • et al.
        Proton magnetic resonance spectroscopy in subjects at risk for schizophrenia.
        Schizophr Res. 2006; 87: 81-88
        • Keshavan M.S.
        • Dick R.M.
        • Diwadkar V.A.
        • Montrose D.M.
        • Prasad K.M.
        • Stanley J.A.
        Striatal metabolic alterations in non-psychotic adolescent offspring at risk for schizophrenia: A (1)H spectroscopy study.
        Schizophr Res. 2009; 115: 88-93
        • Davidson L.L.
        • Heinrichs R.W.
        Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: A meta-analysis.
        Psychiatry Res. 2003; 122: 69-87
        • Pantelis C.
        • Velakoulis D.
        • Wood S.J.
        • Yucel M.
        • Yung A.R.
        • Phillips L.J.
        • et al.
        Neuroimaging and emerging psychotic disorders: The Melbourne ultra-high risk studies.
        Int Rev Psychiatry. 2007; 19: 371-381
        • Wechsler D.
        Wechsler Adult Intelligence Scale.
        4th ed. The Psychological Corporation, San Antonio, TX2008
        • Wechsler D.
        Intelligence Scale for Children, 3rd ed (WISC-III).
        The Psychological Corporation, San Antonio, TX1999
        • Wechsler D.
        Individual Achievement Test-II (WIAT-II).
        The Psychological Corporation, San Antonio, TX2001
        • Chase-Carmichael C.A.
        • Ris M.D.
        • Weber A.M.
        • Schefft B.K.
        Neurologic validity of the Wisconsin Card Sorting Test with a pediatric population.
        Clin Neuropsychol. 1999; 13: 405-413
        • Cornblatt B.A.
        • Risch N.J.
        • Faris G.
        • Friedman D.
        • Erlenmeyer-Kimling L.
        The Continuous Performance Test, identical pairs version (CPT-IP): I.
        Psychiatry Res. 1988; 26: 223-238
        • National Institute of Mental Health
        Computerized Diagnostic Interview Schedule for Children.
        Columbia University, New York2004
        • Hall R.C.
        Global assessment of functioning.
        Psychosomatics. 1995; 36: 267-275
        • Klose U.
        In vivo proton spectroscopy in presence of eddy currents.
        Magn Reson Med. 1990; 14: 26-30
        • Seeger U.
        • Klose U.
        • Mader I.
        • Grodd W.
        • Nagele T.
        Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases.
        Magn Reson Med. 2003; 49: 19-28
        • Provencher S.W.
        Estimation of metabolite concentrations from localized in vivo proton NMR spectra.
        Magn Reson Med. 1993; 30: 672-679
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-S219
        • Gasparovic C.
        • Song T.
        • Devier D.
        • Bockholt H.J.
        • Caprihan A.
        • Mullins P.G.
        • et al.
        Use of tissue water as a concentration reference for proton spectroscopic imaging.
        Magn Reson Med. 2006; 55: 1219-1226
        • Baslow M.H.
        N-acetylaspartate in the vertebrate brain: Metabolism and function.
        Neurochem Res. 2003; 28: 941-953
        • Bhakoo K.K.
        • Pearce D.
        In vitro expression of N-acetyl aspartate by oligodendrocytes: Implications for proton magnetic resonance spectroscopy signal in vivo.
        J Neurochem. 2000; 74: 254-262
        • Urenjak J.
        • Williams S.R.
        • Gadian D.G.
        • Noble M.
        Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.
        J Neurosci. 1993; 13: 981-989
        • Chakraborty G.
        • Mekala P.
        • Yahya D.
        • Wu G.
        • Ledeen R.W.
        Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: Evidence for myelin-associated aspartoacylase.
        J Neurochem. 2001; 78: 736-745
        • Levitt P.
        Structural and functional maturation of the developing primate brain.
        J Pediatr. 2003; 143: S35-S45
        • Chang L.
        • Friedman J.
        • Ernst T.
        • Zhong K.
        • Tsopelas N.D.
        • Davis K.
        Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: Implication for glial dysfunction.
        Biol Psychiatry. 2007; 62: 1396-1404
        • Schaer M.
        • Debbane M.
        • Bach Cuadra M.
        • Ottet M.C.
        • Glaser B.
        • Thiran J.P.
        • Eliez S.
        Deviant trajectories of cortical maturation in 22q11.2 deletion syndrome (22q11DS): A cross-sectional and longitudinal study.
        Schizophr Res. 2009; 115: 182-190
        • Shaw P.
        • Gogtay N.
        • Rapoport J.
        Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories.
        Hum Brain Mapp. 2010; 31: 917-925
        • Kates W.R.
        • Burnette C.P.
        • Bessette B.A.
        • Folley B.S.
        • Strunge L.
        • Jabs E.W.
        • Pearlson G.D.
        Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2).
        J Child Neurol. 2004; 19: 337-342
        • Barnea-Goraly N.
        • Menon V.
        • Krasnow B.
        • Ko A.
        • Reiss A.
        • Eliez S.
        Investigation of white matter structure in velocardiofacial syndrome: A diffusion tensor imaging study.
        Am J Psychiatry. 2003; 160: 1863-1869
        • Campbell L.E.
        • Daly E.
        • Toal F.
        • Stevens A.
        • Azuma R.
        • Catani M.
        • et al.
        Brain and behaviour in children with 22q11.2 deletion syndrome: A volumetric and voxel-based morphometry MRI study.
        Brain. 2006; 129: 1218-1228
        • Courvoisie H.
        • Hooper S.R.
        • Fine C.
        • Kwock L.
        • Castillo M.
        Neurometabolic functioning and neuropsychological correlates in children with ADHD-H: Preliminary findings.
        J Neuropsychiatry Clin Neurosci. 2004; 16: 63-69
        • Fayed N.
        • Modrego P.J.
        Comparative study of cerebral white matter in autism and attention-deficit/hyperactivity disorder by means of magnetic resonance spectroscopy.
        Acad Radiol. 2005; 12: 566-569
        • Fayed N.
        • Modrego P.J.
        • Castillo J.
        • Davila J.
        Evidence of brain dysfunction in attention deficit-hyperactivity disorder: A controlled study with proton magnetic resonance spectroscopy.
        Acad Radiol. 2007; 14: 1029-1035
        • Shaw M.E.
        • Moores K.A.
        • Clark R.C.
        • McFarlane A.C.
        • Strother S.C.
        • Bryant R.A.
        • et al.
        Functional connectivity reveals inefficient working memory systems in post-traumatic stress disorder.
        Psychiatry Res. 2009; 172: 235-241
        • Shaw P.
        • Eckstrand K.
        • Sharp W.
        • Blumenthal J.
        • Lerch J.P.
        • Greenstein D.
        • et al.
        Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation.
        Proc Natl Acad Sci U S A. 2007; 104: 19649-19654