Advertisement
Archival Report| Volume 72, ISSUE 2, P142-149, July 15, 2012

Methylphenidate Effects on Prefrontal Functioning During Attentional-Capture and Response Inhibition

      Background

      Methylphenidate improves motor response inhibition, typically assessed with the stop-signal task. The exact underlying mechanism for this, however, remains unknown. In addition, recent studies highlight that stop signals can have a confounding attentional-capture effect because of their low frequency in the task. In the current study, we assessed the effects of methylphenidate on neural networks of inhibitory control and attentional-capture within the context of two inhibitory control tasks.

      Methods

      The effects of methylphenidate (40 mg) were assessed using functional magnetic resonance imaging in 16 healthy volunteers in a within-subject, double-blind, placebo-controlled design.

      Results

      Methylphenidate significantly reduced activation of different regions within the right inferior frontal gyrus/insula to infrequent stimuli associated with successful inhibition, failed inhibition, and attentional capture. These inferior frontal gyrus regions showed different interregional connections with inhibitory and attention networks. For failed inhibitions, methylphenidate increased activation within performance-monitoring regions, including the superior frontal, anterior cingulate, and parietal-occipital cortices, but only after controlling for attentional capture.

      Conclusions

      Our findings suggest that the improvement of response inhibition seen following methylphenidate administration is due to its influence on underlying attentional mechanisms linked to response control requirements.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arnsten A.F.T.
        Stimulants: Therapeutic actions in ADHD.
        Neuropsychopharmacology. 2006; 31: 2376-2383
        • Wilens T.E.
        Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder.
        J Clin Psychopharmacol. 2008; 28: S46-S53
        • Krause J.
        SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder.
        Expert Rev Neurother. 2008; 8: 611-625
        • Hannestad J.
        • Gallezot J.D.
        • Planeta-Wilson B.
        • Lin S.F.
        • Williams W.A.
        • van Dyck C.H.
        • et al.
        Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo.
        Biol Psychiatry. 2010; 68: 854-860
        • Rubia K.
        • Halari R.
        • Mohammad A.M.
        • Taylor E.
        • Brammer M.
        Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2011; 70: 255-262
        • Dodds C.M.
        • Muller U.
        • Clark L.
        • van Loon A.
        • Cools R.
        • Robbins T.W.
        Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning.
        J Neurosci. 2008; 28: 5976-5982
        • Mehta M.A.
        • Goodyer I.A.
        • Sahakian B.J.
        Methylphenidate improves working memory and set-shifting in AD/HD: Relationships to baseline memory capacity.
        J Child Psychol Psychiatry. 2004; 45: 293-305
        • Rubia K.
        • Halari R.
        • Christakou A.
        • Taylor E.
        Impulsiveness as a timing disturbance: Neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate.
        Phil Trans Royal Soc B Biol Sci. 2009; 364: 1919-1931
        • Vaidya C.J.
        • Austin G.
        • Kirkorian G.
        • Ridlehuber H.W.
        • Desmond J.E.
        • Glover G.H.
        • et al.
        Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study.
        Proc Natl Acad Sci U S A. 1998; 95: 1494-1499
        • Mehta M.A.
        • Owen A.M.
        • Sahakian B.J.
        • Mavaddat N.
        • Pickard J.D.
        • Robbins T.W.
        Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.
        J Neurosci. 2000; 20: RC65
        • Rubia K.
        • Halari R.
        • Cubillo A.
        • Smith A.B.
        • Mohammad A.M.
        • Brammer M.
        • et al.
        Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naive boys with attention-deficit hyperactivity disorder.
        Neuropsychopharmacology. 2011; 36: 1575-1586
        • Marquand A.F.
        • De Simoni S.
        • O'Daly O.G.
        • Williams S.C.R.
        • Mourao-Miranda J.
        • Mehta M.A.
        Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers.
        Neuropsychopharmacology. 2011; 36: 1237-1247
        • Aron A.R.
        • Dowson J.H.
        • Sahakian B.J.
        • Robbins T.W.
        Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2003; 54: 1465-1468
        • Nandam L.S.
        • Hester R.
        • Wagner J.
        • Cummins T.D.R.
        • Garner K.
        • Dean A.J.
        • et al.
        Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability.
        Biol Psychiatry. 2011; 69: 902-904
        • Overtoom C.C.E.
        • Bekker E.M.
        • van der Molen M.W.
        • Verbaten M.N.
        • Kooij J.J.S.
        • Buitelaar J.K.
        • et al.
        Methylphenidate restores link between stop-signal sensory impact and successful stopping in adults with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2009; 65: 614-619
        • Verbruggen F.
        • Logan G.D.
        Models of response inhibition in the stop-signal and stop-change paradigms.
        Neurosci Biobehav Rev. 2009; 33: 647-661
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex.
        Trends Cogn Sci. 2004; 8: 170-177
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Taylor E.
        Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection.
        NeuroImage. 2003; 20: 351-358
        • Aron A.R.
        • Behrens T.E.
        • Smith S.
        • Frank M.J.
        • Poldrack R.A.
        Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI.
        J Neurosci. 2007; 27: 3743-3752
        • Downar J.
        • Crawley A.P.
        • Mikulis D.J.
        • Davis K.D.
        The effect of task relevance on the cortical response to changes in visual and auditory stimuli: An event-related fMRI study.
        Neuroimage. 2001; 14: 1256-1267
        • Rubia K.
        • Hyde Z.
        • Halari R.
        • Giampietro V.
        • Smith A.
        Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
        Neuroimage. 2010; 51: 817-827
        • Downar J.
        • Crawley A.P.
        • Mikulis D.J.
        • Davis K.D.
        A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities.
        J Neurophysiol. 2002; 87: 615-620
        • Kirino E.
        • Belger A.
        • Goldman-Rakic P.
        • McCarthy G.
        Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: An event-related functional magnetic resonance imaging study.
        J Neurosci. 2000; 20: 6612-6618
        • Helenius P.
        • Laasonen M.
        • Hokkanen L.
        • Paetau R.
        • Niemivirta M.
        Impaired engagement of the ventral attentional pathway in ADHD.
        Neuropsychologia. 2011; 49: 1889-1896
        • Rubia K.
        • Halari R.
        • Cubillo A.
        • Mohammad A.M.
        • Brammer M.
        • Taylor E.
        Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task.
        Neuropharmacology. 2009; 57: 640-652
        • Chikazoe J.
        • Jimura K.
        • Asari T.
        • Yamashita K.I.
        • Morimoto H.
        • Hirose S.
        • et al.
        Functional dissociation in right inferior frontal cortex during performance of Go/No-Go task.
        Cereb Cortex. 2009; 19: 146-152
        • Hampshire A.
        • Chamberlain S.R.
        • Monti M.M.
        • Duncan J.
        • Owen A.M.
        The role of the right inferior frontal gyrus: Inhibition and attentional control.
        Neuroimage. 2010; 50: 1313-1319
        • Sharp D.J.
        • Bonnelle V.
        • De Boissezon X.
        • Beckmann C.F.
        • James S.G.
        • Patel M.C.
        • et al.
        Distinct frontal systems for response inhibition, attentional capture, and error processing.
        Proc Natl Acad Sci. 2010; 107: 6106-6111
        • Groen Y.
        • Mulder L.J.M.
        • Wijers A.A.
        • Minderaa R.B.
        • Althaus M.
        Methylphenidate improves diminished error and feedback sensitivity in ADHD: An evoked heart rate analysis.
        Biol Psychol. 2009; 82: 45-53
        • Jonkman L.M.
        • van Melis J.J.M.
        • Kemner C.
        • Markus C.R.
        Methylphenidate improves deficient error evaluation in children with ADHD: An event-related brain potential study.
        Biol Psychol. 2007; 76: 217-229
        • Kessler R.C.
        • Adler L.
        • Ames M.
        • Demler O.
        • Faraone S.
        • Hiripi E.V.A.
        • et al.
        The World Health Organization adult ADHD self-report scale (ASRS): A short screening scale for use in the general population.
        Psychol Med. 2005; 35: 245-256
        • Nelson H.E.
        • Willison J.R.
        The Revised National Adult Reading Test—Test Manual.
        NFER-Nelson, Windsor, United Kingdom1991
        • Bullmore E.
        • Suckling J.
        • Zelaya F.
        • Long C.
        • Honey G.
        • Reed L.
        • et al.
        Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics.
        Cereb Cortex. 2003; 13: 144-154
        • Gualtieri C.T.
        • Wargin W.
        • Kanoy R.
        • Patrick K.
        • Shen C.D.
        • Youngblood W.
        • et al.
        Clinical studies of methylphenidate serum levels in children and adults.
        J Am Acad Child Adolesc Psychiatry. 1982; 21: 19-26
        • Faraj B.A.
        • Israili A.H.
        • Perel J.M.
        • Jenkins M.L.
        • Holtzman S.G.
        • Cucinell S.A.
        • et al.
        Metabolism and diposition of methylphenidate −14C: Studies in man and animals.
        J Pharmacol Exp Ther. 1974; 191: 535-547
        • Bond A.
        • Lader M.
        The use of analogue scales in rating subjective feelings.
        Br J Med Psychol. 1974; 47: 211-218
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Toone B.
        • Taylor E.
        Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD.
        Am J Psychiatry. 2005; 162: 1067-1075
        • Rubia K.
        • Smith A.B.
        • Taylor E.
        • Brammer M.
        Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes.
        Hum Brain Mapp. 2007; 28: 1163-1177
        • Chamberlain S.R.
        • Hampshire A.
        • Mueller U.
        • Rubia K.
        • del Campo N.
        • Craig K.
        • et al.
        Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study.
        Biol Psychiatry. 2009; 65: 550-555
        • Brett M.
        • Anton J.-L.
        • Valabregue R.
        • Poline J.-B.
        Region of interest analysis using an SPM toolbox [abstract].
        2002 (Paper presented at: 8th International Conference on Functional Mapping of the Human Brain; June 2-6, 2002; Sendai, Japan. Available on CD-ROM in Neuroimage Vol 16, No 2)
        • Boehler C.N.
        • Appelbaum L.G.
        • Krebs R.M.
        • Hopf J.M.
        • Woldorff M.G.
        Pinning down response inhibition in the brain—conjunction analyses of the stop-signal task.
        Neuroimage. 2010; 52: 1621-1632
        • Corbetta M.
        • Kincade J.M.
        • Shulman G.L.
        Neural systems for visual orienting and their relationships to spatial working memory.
        J Cogn Neurosci. 2002; 14: 508-523
        • van Gaal S.
        • Ridderinkhof K.R.
        • van den Wildenberg W.P.M.
        • Lamme V.A.F.
        Dissociating consciousness from inhibitory control: Evidence for unconsciously triggered response inhibition in the stop-signal task.
        J Exp Psychol Hum Percept Perform. 2009; 35: 1129-1139
        • Dalton P.
        • Lavie N.
        Auditory attentional capture: effects of singleton distractor sounds.
        J Exp Psychol Hum Percept Perform. 2004; 30: 180-193
        • Mason D.J.
        • Humphreys G.W.
        • Kent L.
        Visual search, singleton capture, and the control of attentional set in ADHD.
        Cogn Neuropsychol. 2004; 21: 661-687
        • Huettel S.A.
        • McCarthy G.
        What is odd in the oddball task?: Prefrontal cortex is activated by dynamic changes in response strategy.
        Neuropsychologia. 2004; 42: 379-386
        • Seeman P.
        • Madras B.
        Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: A hypothesis.
        Behav Brain Res. 2002; 130: 79-83
        • Graf H.
        • Abler B.
        • Freudenmann R.
        • Beschoner P.
        • Schaeffeler E.
        • Spitzer M.
        • et al.
        Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers.
        Biol Psychiatry. 2011; 69: 890-897
        • Bymaster F.P.
        • Katner J.S.
        • Nelson D.L.
        • Hemrick-Luecke S.K.
        • Threlkeld P.G.
        • Heiligenstein J.H.
        • et al.
        Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder.
        Neuropsychopharmacology. 2002; 27: 699-711
        • Schlaggar B.L.
        • Brown T.T.
        • Lugar H.M.
        • Visscher K.M.
        • Miezin F.M.
        • Petersen S.E.
        Functional neuroanatomical differences between adults and school-age children in the processing of single words.
        Science. 2002; 296: 1476-1479
        • Bekker E.M.
        • Kenemans J.L.
        • Hoeksma M.R.
        • Talsma D.
        • Verbaten M.N.
        The pure electrophysiology of stopping.
        Int J Psychophysiol. 2005; 55: 191-198
        • Ramautar J.R.
        • Slagter H.A.
        • Kok A.
        • Ridderinkhof K.R.
        Probability effects in the stop-signal paradigm: The insula and the significance of failed inhibition.
        Brain Res. 2006; 1105: 143-154
        • Ridderinkhof K.R.
        • Ullsperger M.
        • Crone E.A.
        • Nieuwenhuis S.
        The role of the medial frontal cortex in cognitive control.
        Science. 2004; 306: 443-447
        • De Fockert J.
        • Rees G.
        • Frith C.
        • Lavie N.
        Neural correlates of attentional capture in visual search.
        J Cogn Neurosci. 2004; 16: 751-759
        • Hayden B.Y.
        • Nair A.C.
        • McCoy A.N.
        • Platt M.L.
        Posterior cingulate cortex mediates outcome-contingent allocation of behavior.
        Neuron. 2008; 60: 19-25
        • Pliszka S.R.
        • Glahn D.C.
        • Semrud-Clikeman M.
        • Franklin C.
        • Perez III, R.
        • Xiong J.
        • et al.
        Neuroimaging of inhibitory control areas in children with attention deficit hyperactivity disorder who were treatment naive or in long-term treatment.
        Am J Psychiatry. 2006; 163: 1052-1060
        • Holroyd C.B.
        • Baker T.E.
        • Kerns K.A.
        • Müller U.
        Electrophysiological evidence of atypical motivation and reward processing in children with attention-deficit hyperactivity disorder.
        Neuropsychologia. 2008; 46: 2234-2242
        • Alderson R.M.
        • Rapport M.D.
        • Sarver D.E.
        • Kofler M.J.
        ADHD and behavioral inhibition: A re-examination of the stop-signal task.
        J Abnorm Child Psychol. 2008; 36: 989-998
        • Krusch D.A.
        • Klorman R.
        • Brumaghim J.T.
        • Fitzpatrick P.A.
        • Borgstedt A.D.
        • Strauss J.
        Methylphenidate slows reactions of children with attention deficit disorder during and after an error.
        J Abnorm Child Psychol. 1996; 24: 633-650
        • Hester R.
        • Nandam L.S.
        • O'Connell R.G.
        • Wagner J.
        • Strudwick M.
        • Nathan P.J.
        • et al.
        Neurochemical enhancement of conscious error awareness.
        J Neurosci. 2012; 32: 2619-2627
        • Paloyelis Y.
        • Mehta M.A.
        • Kuntsi J.
        • Asherson P.
        Functional MRI in ADHD: A systematic literature review.
        Expert Rev Neurother. 2007; 7: 1337-1356
        • Bush G.
        • Spencer T.J.
        • Holmes J.
        • Shin L.M.
        • Valera E.M.
        • Seidman L.J.
        • et al.
        Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task.
        Arch Gen Psychiatry. 2008; 65: 102-114
        • Corbetta M.
        • Shulman G.L.
        Control of goal-directed and stimulus-driven attention in the brain.
        Nat Rev Neurosci. 2002; 3: 201-215