Advertisement
Archival Report| Volume 71, ISSUE 10, P898-905, May 15, 2012

Download started.

Ok

Alterations of the Brain Reward System in Antipsychotic Naïve Schizophrenia Patients

  • Mette Ødegaard Nielsen
    Correspondence
    Address correspondence to Mette Ødegaard Nielsen, M.D., Ph.D. student, Copenhagen University Hospital, Center for Neuropsychiatric Schizophrenia Research, CNSR, Psychiatric Center Glostrup, Nordre Ringvej 29-67, 2600 Glostrup, Denmark
    Affiliations
    Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Glostrup, Denmark
    Search for articles by this author
  • Egill Rostrup
    Affiliations
    Functional Imaging Unit, Copenhagen University Hospital, Glostrup, Denmark
    Search for articles by this author
  • Sanne Wulff
    Affiliations
    Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Glostrup, Denmark
    Search for articles by this author
  • Nikolaj Bak
    Affiliations
    Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Glostrup, Denmark
    Search for articles by this author
  • Henrik Lublin
    Affiliations
    Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Glostrup, Denmark
    Search for articles by this author
  • Shitij Kapur
    Affiliations
    Institute of Psychiatry, Kings College London, United Kingdom
    Search for articles by this author
  • Birte Glenthøj
    Affiliations
    Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Glostrup, Denmark
    Search for articles by this author

      Background

      Various schizophrenic symptoms are suggested to be linked to a dysfunction of the brain reward system. Several studies have found alterations in the reward processing in patients with schizophrenia; however, most previous findings might be confounded by medication effects.

      Methods

      Thirty-one antipsychotic-naïve schizophrenia patients and 31 age- and gender-matched healthy control subjects were examined with functional magnetic resonance imaging while playing a variant of the monetary incentive delay task. The task variant made it possible to separate overall salience (defined as arousing events) into behavioral salience (events where a predicted reward requires performance) and valence anticipation (the anticipation of a monetarily significant outcome). Furthermore, the evaluation of monetary gain and loss was assessed.

      Results

      During reward anticipation, patients had a significant attenuation of the activation in ventral tegmentum, ventral striatum, and anterior cingulate cortex during presentation of salient cues. This signal attenuation in ventral striatum was correlated with the degree of positive symptoms. Signal attenuation was most pronounced for behavioral salience and nonsignificant for value anticipation. Furthermore, patients showed a changed activation pattern during outcome evaluation in right prefrontal cortex.

      Conclusion

      Our results suggest that changes during reward anticipation in schizophrenia are present from the beginning of the disease. This supports a possible involvement of reward disturbances in the pathophysiology of schizophrenia. The most pronounced changes were seen in relation to overall salience. In ventral striatum these changes were associated with the degree of positive symptoms.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berridge K.C.
        • Robinson T.E.
        • Aldridge J.W.
        Dissecting components of reward: ‘liking’, ‘wanting’, and learning.
        Curr Opin Pharmacol. 2009; 9: 65-73
        • Redgrave P.
        • Prescott T.J.
        • Gurney K.
        Is the short-latency dopamine response too short to signal reward error?.
        Trends Neurosci. 1999; 22: 146-151
        • Schultz W.
        • Dayan P.
        • Montague P.R.
        A neural substrate of prediction and reward.
        Science. 1997; 275: 1593-1599
        • Berridge K.C.
        The debate over dopamine's role in reward: The case for incentive salience.
        Psychopharmacology (Berl). 2007; 191: 391-431
        • Zink C.F.
        • Pagnoni G.
        • Martin-Skurski M.E.
        • Chappelow J.C.
        • Berns G.S.
        Human striatal responses to monetary reward depend on saliency.
        Neuron. 2004; 42: 509-517
        • Horvitz J.C.
        Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events.
        Neuroscience. 2000; 96: 651-656
        • Knutson B.
        • Fong G.W.
        • Adams C.M.
        • Varner J.L.
        • Hommer D.
        Dissociation of reward anticipation and outcome with event-related fMRI.
        Neuroreport. 2001; 12: 3683-3687
        • Costa V.D.
        • Lang P.J.
        • Sabatinelli D.
        • Versace F.
        • Bradley M.M.
        Emotional imagery: Assessing pleasure and arousal in the brain's reward circuitry.
        Hum Brain Mapp. 2010; 31: 1446-1457
        • Wallis J.D.
        Orbitofrontal cortex and its contribution to decision-making.
        Annu Rev Neurosci. 2007; 30: 31-56
        • Barch D.M.
        • Dowd E.C.
        Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions.
        Schizophr Bull. 2010; 36: 919-934
        • Carlsson A.
        The neurochemical circuitry of schizophrenia.
        Pharmacopsychiatry. 2006; 39: S10-S14
        • Seamans J.K.
        • Yang C.R.
        The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
        Prog Neurobiol. 2004; 74: 1-58
        • Rasmussen H.
        • Erritzoe D.
        • Andersen R.
        • Ebdrup B.H.
        • Aggernaes B.
        • Oranje B.
        • et al.
        Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 9-16
        • Glenthoj B.Y.
        • Mackeprang T.
        • Svarer C.
        • Rasmussen H.
        • Pinborg L.H.
        • Friberg L.
        • et al.
        Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender.
        Biol Psychiatry. 2006; 60: 621-629
        • Howes O.D.
        • Kapur S.
        The dopamine hypothesis of schizophrenia: Version III—the final common pathway.
        Schizophr Bull. 2009; 35: 549-562
        • Reith J.
        • Benkelfat C.
        • Sherwin A.
        • Yasuhara Y.
        • Kuwabara H.
        • Andermann F.
        • et al.
        Elevated dopa decarboxylase activity in living brain of patients with psychosis.
        Proc Natl Acad Sci U S A. 1994; 91: 11651-11654
        • Hietala J.
        • Syvalahti E.
        • Vuorio K.
        • Rakkolainen V.
        • Bergman J.
        • Haaparanta M.
        • et al.
        Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients.
        Lancet. 1995; 346: 1130-1131
        • Dao-Castellana M.H.
        • Paillere-Martinot M.L.
        • Hantraye P.
        • Attar-Levy D.
        • Remy P.
        • Crouzel C.
        • et al.
        Presynaptic dopaminergic function in the striatum of schizophrenic patients.
        Schizophr Res. 1997; 23: 167-174
        • Lindstrom L.H.
        • Gefvert O.
        • Hagberg G.
        • Lundberg T.
        • Bergstrom M.
        • Hartvig P.
        • et al.
        Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET.
        Biol Psychiatry. 1999; 46: 681-688
        • Laruelle M.
        • Abi-Dargham A.
        • van Dyck C.H.
        • Gil R.
        • D'Souza C.D.
        • Erdos J.
        • et al.
        Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.
        Proc Natl Acad Sci U S A. 1996; 93: 9235-9240
        • Abi-Dargham A.
        • Gil R.
        • Krystal J.
        • Baldwin R.M.
        • Seibyl J.P.
        • Bowers M.
        • et al.
        Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort.
        Am J Psychiatry. 1998; 155: 761-767
        • Breier A.
        • Su T.P.
        • Saunders R.
        • Carson R.E.
        • Kolachana B.S.
        • de Bartolomeis A.
        • et al.
        Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method.
        Proc Natl Acad Sci U S A. 1997; 94: 2569-2574
        • Agid O.
        • Mamo D.
        • Ginovart N.
        • Vitcu I.
        • Wilson A.A.
        • Zipursky R.B.
        • et al.
        Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response—a double-blind PET study in schizophrenia.
        Neuropsychopharmacology. 2007; 32: 1209-1215
        • Zipursky R.B.
        • Christensen B.K.
        • Daskalakis Z.
        • Epstein I.
        • Roy P.
        • Furimsky I.
        • et al.
        Treatment response to olanzapine and haloperidol and its association with dopamine D receptor occupancy in first-episode psychosis.
        Can J Psychiatry. 2005; 50: 462-469
        • Meyer-Lindenberg A.
        • Miletich R.S.
        • Kohn P.D.
        • Esposito G.
        • Carson R.E.
        • Quarantelli M.
        • et al.
        Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia.
        Nat Neurosci. 2002; 5: 267-271
        • Waelti P.
        • Dickinson A.
        • Schultz W.
        Dopamine responses comply with basic assumptions of formal learning theory.
        Nature. 2001; 412: 43-48
        • Berridge K.C.
        • Robinson T.E.
        Parsing reward.
        Trends Neurosci. 2003; 26: 507-513
        • Knutson B.
        • Bjork J.M.
        • Fong G.W.
        • Hommer D.
        • Mattay V.S.
        • Weinberger D.R.
        Amphetamine modulates human incentive processing.
        Neuron. 2004; 43: 261-269
        • Dreher J.C.
        • Meyer-Lindenberg A.
        • Kohn P.
        • Berman K.F.
        Age-related changes in midbrain dopaminergic regulation of the human reward system.
        Proc Natl Acad Sci U S A. 2008; 105: 15106-15111
        • da Silva A.F.
        • Schmitz N.
        • Figee M.
        • Abeling N.
        • Hasler G.
        • van der Meer J.
        • et al.
        Dopaminergic modulation of the human reward system: A placebo-controlled dopamine depletion fMRI study.
        J Psychopharmacol. 2011; 25: 538-549
        • Juckel G.
        • Schlagenhauf F.
        • Koslowski M.
        • Wustenberg T.
        • Villringer A.
        • Knutson B.
        • et al.
        Dysfunction of ventral striatal reward prediction in schizophrenia.
        Neuroimage. 2006; 29: 409-416
        • Schlagenhauf F.
        • Sterzer P.
        • Schmack K.
        • Ballmaier M.
        • Rapp M.
        • Wrase J.
        • et al.
        Reward feedback alterations in unmedicated schizophrenia patients: Relevance for delusions.
        Biol Psychiatry. 2009; 65: 1032-1039
        • Paradiso S.
        • Andreasen N.C.
        • Crespo-Facorro B.
        • O'Leary D.S.
        • Watkins G.L.
        • Boles Ponto L.L.
        • et al.
        Emotions in unmedicated patients with schizophrenia during evaluation with positron emission tomography.
        Am J Psychiatry. 2003; 160: 1775-1783
        • Plailly J.
        • d'Amato T.
        • Saoud M.
        • Royet J.P.
        Left temporo-limbic and orbital dysfunction in schizophrenia during odor familiarity and hedonicity judgments.
        Neuroimage. 2006; 29: 302-313
        • Simon J.J.
        • Biller A.
        • Walther S.
        • Roesch-Ely D.
        • Stippich C.
        • Weisbrod M.
        • et al.
        Neural correlates of reward processing in schizophrenia—relationship to apathy and depression.
        Schizophr Res. 2010; 118: 154-161
        • Waltz J.A.
        • Schweitzer J.B.
        • Ross T.J.
        • Kurup P.K.
        • Salmeron B.J.
        • Rose E.J.
        • et al.
        Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia.
        Neuropsychopharmacology. 2010; 35: 2427-2439
        • Harvey P.O.
        • Armony J.
        • Malla A.
        • Lepage M.
        Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia.
        J Psychiatr Res. 2010; 44: 707-716
        • Heinz A.
        • Schlagenhauf F.
        Dopaminergic dysfunction in schizophrenia: Salience attribution revisited.
        Schizophr Bull. 2010; 36: 472-485
        • Cooper J.C.
        • Knutson B.
        Valence and salience contribute to nucleus accumbens activation.
        Neuroimage. 2008; 39: 538-547
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The positive and negative syndrome scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Knutson B.
        • Adams C.M.
        • Fong G.W.
        • Hommer D.
        Anticipation of increasing monetary reward selectively recruits nucleus accumbens.
        J Neurosci. 2001; 21: RC159
        • Dreher J.C.
        • Kohn P.
        • Berman K.F.
        Neural coding of distinct statistical properties of reward information in humans.
        Cereb Cortex. 2006; 16: 561-573
        • Kirsch P.
        • Schienle A.
        • Stark R.
        • Sammer G.
        • Blecker C.
        • Walter B.
        • et al.
        Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: An event-related fMRI study.
        Neuroimage. 2003; 20: 1086-1095
        • Walter H.
        • Kammerer H.
        • Frasch K.
        • Spitzer M.
        • Abler B.
        Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia.
        Psychopharmacology (Berl). 2009; 206: 121-132
        • Murray G.K.
        • Corlett P.R.
        • Clark L.
        • Pessiglione M.
        • Blackwell A.D.
        • Honey G.
        • et al.
        Substantia nigra/ventral tegmental reward prediction error disruption in psychosis.
        Mol Psychiatry. 2008; 13: 239
        • Abi-Dargham A.
        • Rodenhiser J.
        • Printz D.
        • Zea-Ponce Y.
        • Gil R.
        • Kegeles L.S.
        • et al.
        Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.
        Proc Natl Acad Sci U S A. 2000; 97: 8104-8109
        • Kegeles L.S.
        • Abi-Dargham A.
        • Frankle W.G.
        • Gil R.
        • Cooper T.B.
        • Slifstein M.
        • et al.
        Increased synaptic dopamine function in associative regions of the striatum in schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 231-239
        • Howes O.D.
        • Egerton A.
        • Allan V.
        • McGuire P.
        • Stokes P.
        • Kapur S.
        Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: Insights from PET and SPECT imaging.
        Curr Pharm Des. 2009; 15: 2550-2559
        • Taylor S.F.
        • Phan K.L.
        • Britton J.C.
        • Liberzon I.
        Neural response to emotional salience in schizophrenia.
        Neuropsychopharmacology. 2005; 30: 984-995
        • Robinson T.E.
        • Berridge K.C.
        The neural basis of drug craving: An incentive-sensitization theory of addiction.
        Brain Res Brain Res Rev. 1993; 18: 247-291
        • Heinz A.
        Dopaminergic dysfunction in alcoholism and schizophrenia—psychopathological and behavioral correlates.
        Eur Psychiatry. 2002; 17: 9-16
        • Kapur S.
        Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia.
        Am J Psychiatry. 2003; 160: 13-23
        • Gard D.E.
        • Kring A.M.
        • Gard M.G.
        • Horan W.P.
        • Green M.F.
        Anhedonia in schizophrenia: Distinctions between anticipatory and consummatory pleasure.
        Schizophr Res. 2007; 93: 253-260
        • Dowd E.C.
        • Barch D.M.
        Anhedonia and emotional experience in schizophrenia: Neural and behavioral indicators.
        Biol Psychiatry. 2010; 67: 902-911
        • Ursu S.
        • Kring A.M.
        • Gard M.G.
        • Minzenberg M.J.
        • Yoon J.H.
        • Ragland J.D.
        • et al.
        Prefrontal cortical deficits and impaired cognition-emotion interactions in schizophrenia.
        Am J Psychiatry. 2011; 168: 276-285
        • Corlett P.R.
        • Murray G.K.
        • Honey G.D.
        • Aitken M.R.
        • Shanks D.R.
        • Robbins T.W.
        • et al.
        Disrupted prediction-error signal in psychosis: Evidence for an associative account of delusions.
        Brain. 2007; 130: 2387-2400
        • Picard H.
        • Amado I.
        • Mouchet-Mages S.
        • Olie J.P.
        • Krebs M.O.
        The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences.
        Schizophr Bull. 2008; 34: 155-172
        • van Hell H.H.
        • Vink M.
        • Ossewaarde L.
        • Jager G.
        • Kahn R.S.
        • Ramsey N.F.
        Chronic effects of cannabis use on the human reward system: An fMRI study.
        Eur Neuropsychopharmacol. 2010; 20: 153-163
        • Nestor L.
        • Hester R.
        • Garavan H.
        Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users.
        Neuroimage. 2010; 49: 1133-1143
        • Kozink R.V.
        • Kollins S.H.
        • McClernon F.J.
        Smoking withdrawal modulates right inferior frontal cortex but not presupplementary motor area activation during inhibitory control.
        Neuropsychopharmacology. 2010; 35: 2600-2606
        • Friedman L.
        • Turner J.A.
        • Stern H.
        • Mathalon D.H.
        • Trondsen L.C.
        • Potkin S.G.
        Chronic smoking and the BOLD response to a visual activation task and a breath hold task in patients with schizophrenia and healthy controls.
        Neuroimage. 2008; 40: 1181-1194