Archival Report| Volume 72, ISSUE 3, P215-220, August 01, 2012

A Magnetization Transfer Imaging Study of Corpus Callosum Myelination in Young Children with Autism

  • Marta Gozzi
    Address correspondence to Marta Gozzi, Ph.D., Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room 1C250, MSC 1255, Bethesda, MD 20892-1255
    Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Dylan M. Nielson
    Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland

    Department of Neuroscience, The Ohio State University, Columbus, Ohio
    Search for articles by this author
  • Rhoshel K. Lenroot
    Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland

    Neuroscience Research Australia and School of Psychiatry, University of New South Wales, Sydney, Australia
    Search for articles by this author
  • John L. Ostuni
    Clinical Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • David A. Luckenbaugh
    Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Audrey E. Thurm
    Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Jay N. Giedd
    Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Susan E. Swedo
    Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author


      Several lines of evidence suggest that autism may be associated with abnormalities in white matter development. However, inconsistencies remain in the literature regarding the nature and extent of these abnormalities, partly because of the limited types of measurements that have been used. Here, we used magnetization transfer imaging to provide insight into the myelination of the corpus callosum in children with autism.


      Magnetization transfer imaging scans were obtained in 101 children with autism and 35 typically developing children who did not significantly differ with regard to gender or age. The midsagittal area of the corpus callosum was manually traced and the magnetization transfer ratio (MTR) was calculated for each voxel within the corpus callosum. Mean MTR and height and location of the MTR histogram peak were analyzed.


      Mean MTR and MTR histogram peak height and location were significantly higher in children with autism than in typically developing children, suggesting abnormal myelination of the corpus callosum in autism.


      The differences in callosal myelination suggested by these results may reflect an alteration in the normally well-regulated process of myelination of the brain, with broad implications for neuropathology, diagnosis, and treatment of autism.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        (Text Revision)4th ed. American Psychiatric Association, Washington, DC2000
        • Flanders S.C.
        • Engelhart L.
        • Pandina G.J.
        • McCracken J.T.
        Direct health care costs for children with pervasive developmental disorders: 1996–2002.
        Adm Policy Ment Health. 2007; 34: 213-220
        • Newschaffer C.J.
        • Curran L.K.
        Autism: An emerging public health problem.
        Public Health Rep. 2003; 118: 393-399
        • Shimabukuro T.T.
        • Grosse S.D.
        • Rice C.
        Medical expenditures for children with an autism spectrum disorder in a privately insured population.
        J Autism Dev Disord. 2008; 38: 546-552
        • Casanova M.F.
        The neuropathology of autism.
        Brain Pathol. 2007; 17: 422-433
        • Schmitz C.
        • Rezaie P.
        The neuropathology of autism: Where do we stand?.
        Neuropathol Appl Neurobiol. 2008; 34: 4-11
        • Just M.A.
        • Cherkassky V.L.
        • Keller T.A.
        • Kana R.K.
        • Minshew N.J.
        Functional and anatomical cortical underconnectivity in autism: Evidence from an FMRI study of an executive function task and corpus callosum morphometry.
        Cereb Cortex. 2007; 17: 951-961
        • Minshew N.J.
        • Williams D.L.
        The new neurobiology of autism: Cortex, connectivity, and neuronal organization.
        Arch Neurol. 2007; 64: 945-950
        • Muller R.A.
        The study of autism as a distributed disorder.
        Ment Retard Dev Disabil Res Rev. 2007; 13: 85-95
        • Courchesne E.
        • Pierce K.
        • Schumann C.M.
        • Redcay E.
        • Buckwalter J.A.
        • Kennedy D.P.
        • et al.
        Mapping early brain development in autism.
        Neuron. 2007; 56: 399-413
        • Shukla D.K.
        • Keehn B.
        • Smylie D.M.
        • Muller R.A.
        Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder.
        Neuropsychologia. 2011; 49: 1378-1382
        • Groen W.B.
        • Buitelaar J.K.
        • van der Gaag R.J.
        • Zwiers M.P.
        Pervasive microstructural abnormalities in autism: A DTI study.
        J Psychiatry Neurosci. 2011; 36: 32-40
        • Alexander A.L.
        • Lee J.E.
        • Lazar M.
        • Boudos R.
        • DuBray M.B.
        • Oakes T.R.
        • et al.
        Diffusion tensor imaging of the corpus callosum in Autism.
        Neuroimage. 2007; 34: 61-73
        • Barnea-Goraly N.
        • Kwon H.
        • Menon V.
        • Eliez S.
        • Lotspeich L.
        • Reiss A.L.
        White matter structure in autism: Preliminary evidence from diffusion tensor imaging.
        Biol Psychiatry. 2004; 55: 323-326
        • Ke X.
        • Tang T.
        • Hong S.
        • Hang Y.
        • Zou B.
        • Li H.
        • et al.
        White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging.
        Brain Res. 2009; 1265: 171-177
        • Keller T.A.
        • Kana R.K.
        • Just M.A.
        A developmental study of the structural integrity of white matter in autism.
        Neuroreport. 2007; 18: 23-27
        • Lee J.E.
        • Bigler E.D.
        • Alexander A.L.
        • Lazar M.
        • DuBray M.B.
        • Chung M.K.
        • et al.
        Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism.
        Neurosci Lett. 2007; 424: 127-132
        • Sundaram S.K.
        • Kumar A.
        • Makki M.I.
        • Behen M.E.
        • Chugani H.T.
        • Chugani D.C.
        Diffusion tensor imaging of frontal lobe in autism spectrum disorder.
        Cereb Cortex. 2008; 18: 2659-2665
        • Ben Bashat D.
        • Kronfeld-Duenias V.
        • Zachor D.A.
        • Ekstein P.M.
        • Hendler T.
        • Tarrasch R.
        • et al.
        Accelerated maturation of white matter in young children with autism: A high b value DWI study.
        Neuroimage. 2007; 37: 40-47
        • Cheng Y.
        • Chou K.H.
        • Chen I.Y.
        • Fan Y.T.
        • Decety J.
        • Lin C.P.
        Atypical development of white matter microstructure in adolescents with autism spectrum disorders.
        Neuroimage. 2010; 50: 873-882
        • Frazier T.W.
        • Hardan A.Y.
        A meta-analysis of the corpus callosum in autism.
        Biol Psychiatry. 2009; 66: 935-941
        • van Buchem M.A.
        • Steens S.C.
        • Vrooman H.A.
        • Zwinderman A.H.
        • McGowan J.C.
        • Rassek M.
        • et al.
        Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: A preliminary study.
        AJNR Am J Neuroradiol. 2001; 22: 762-766
        • Wolff S.D.
        • Balaban R.S.
        Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo.
        Magn Reson Med. 1989; 10: 135-144
        • Engelbrecht V.
        • Rassek M.
        • Preiss S.
        • Wald C.
        • Modder U.
        Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain.
        AJNR Am J Neuroradiol. 1998; 19: 1923-1929
        • Mehta R.C.
        • Pike G.B.
        • Enzmann D.R.
        Magnetization transfer MR of the normal adult brain.
        AJNR Am J Neuroradiol. 1995; 16: 2085-2091
        • Silver N.C.
        • Barker G.J.
        • MacManus D.G.
        • Tofts P.S.
        • Miller D.H.
        Magnetisation transfer ratio of normal brain white matter: A normative database spanning four decades of life.
        J Neurol Neurosurg Psychiatry. 1997; 62: 223-228
        • Brouwer R.M.
        • Mandl R.C.
        • Peper J.S.
        • van Baal G.C.
        • Kahn R.S.
        • Boomsma D.I.
        • et al.
        Heritability of DTI and MTR in nine-year-old children.
        Neuroimage. 2010; 53: 1085-1092
        • Madler B.
        • Drabycz S.A.
        • Kolind S.H.
        • Whittall K.P.
        • MacKay A.L.
        Is diffusion anisotropy an accurate monitor of myelination?.
        Magn Reson Imaging. 2008; 26: 874-888
        • Mandl R.C.
        • Schnack H.G.
        • Luigjes J.
        • van den Heuvel M.P.
        • Cahn W.
        • Kahn R.S.
        • et al.
        Tract-based analysis of magnetization transfer ratio and diffusion tensor imaging of the frontal and frontotemporal connections in schizophrenia.
        Schizophr Bull. 2010; 36: 778-787
        • Wozniak J.R.
        • Lim K.O.
        Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging.
        Neurosci Biobehav Rev. 2006; 30: 762-774
        • Allen C.
        • Beaulieu P.S.
        Water diffusion in the giant axon of the squid: Implications for diffusion-weighted MRI of the nervous system.
        Magn Reson Med. 1994; 32: 579-583
        • Allen C.
        • Beaulieu P.S.
        Determinants of anisotropic water diffusion in nerves.
        Magn Reson Med. 1994; 31: 394-400
        • Kucharczyk W.
        • Macdonald P.M.
        • Stanisz G.J.
        • Henkelman R.M.
        Relaxivity and magnetization transfer of white matter lipids at MR imaging: Importance of cerebrosides and pH.
        Radiology. 1994; 192: 521-529
        • Schmierer K.
        • Scaravilli F.
        • Altmann D.R.
        • Barker G.J.
        • Miller D.H.
        Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain.
        Ann Neurol. 2004; 56: 407-415
        • Bellmann-Strobl J.
        • Stiepani H.
        • Wuerfel J.
        • Bohner G.
        • Paul F.
        • Warmuth C.
        • et al.
        MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: A combined cross-sectional and longitudinal study.
        Eur Radiol. 2009; 19: 2066-2074
        • Horsfield M.A.
        Magnetization transfer imaging in multiple sclerosis.
        J Neuroimag. 2005; 15: 58S-67S
        • Dousset V.
        • Armand J.P.
        • Lacoste D.
        • Mieze S.
        • Letenneur L.
        • Dartigues J.F.
        • et al.
        Magnetization transfer study of HIV encephalitis and progressive multifocal leukoencephalopathy.
        AJNR Am J Neuroradiol. 1997; 18: 895-901
        • Silver N.C.
        • Barker G.J.
        • MacManus D.G.
        • Miller D.H.
        • Thorpe J.W.
        • Howard R.S.
        Decreased magnetisation transfer ratio due to demyelination: A case of central pontine myelinolysis.
        J Neurol Neurosurg Psychiatry. 1996; 61: 208-209
        • Foong J.
        • Symms M.R.
        • Barker G.J.
        • Maier M.
        • Woermann F.G.
        • Miller D.H.
        • et al.
        Neuropathological abnormalities in schizophrenia: Evidence from magnetization transfer imaging.
        Brain. 2001; 124: 882-892
        • Muller-Vahl K.R.
        • Kaufmann J.
        • Grosskreutz J.
        • Dengler R.
        • Emrich H.M.
        • Peschel T.
        Prefrontal and anterior cingulate cortex abnormalities in Tourette syndrome: Evidence from voxel-based morphometry and magnetization transfer imaging.
        BMC Neurosci. 2009; 10: 47
        • Hardan A.Y.
        • Pabalan M.
        • Gupta N.
        • Bansal R.
        • Melhem N.M.
        • Fedorov S.
        • et al.
        Corpus callosum volume in children with autism.
        Psychiatry Res. 2009; 174: 57-61
        • Lord C.
        • Rutter M.
        • Le Couteur A.
        Autism Diagnostic Interview—Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.
        J Autism Dev Disord. 1994; 24: 659-685
        • Lord C.
        • Risi S.
        • Lambrecht L.
        • Cook E.H.
        • Leventhal B.L.
        • DiLavore P.C.
        • et al.
        The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism.
        J Autism Dev Disord. 2000; 30: 205-223
        • Rutter M.
        • Bailey A.
        • Lord C.
        Social Communication Questionnaire.
        Western Psychological Services, Los Angeles2003
        • Achenbach T.M.
        • Rescorla L.A.
        Manual for the ASEBA Preschool Forms & Profiles.
        University of Vermont, Research Center for children, Youth, and Families, Burlington2000
        • Mullen E.M.
        Mullen Scales of Early Learning.
        American Guidance Service, Circle Pines, MN1995
        • Elliott C.D.
        Manual for the Differential Ability Scales.
        2nd Ed. Harcourt Assessment, San Antonio, TX2007
        • McAuliffe M.
        • Lalonde F.M.
        • McGarry D.
        • Gandler W.
        • Trus K.
        • Csaky B.L.
        Medical image processing, analysis & visualization in clinical research.
        Proceedings of the 14th Symposium on Computer-Based Medical Systems. 2001; (CBMS 2001): 381-386
        • Ostuni J.L.
        • Richert N.
        • Wisniewski R.
        • Lewis B.K.
        • Howard T.
        • Patel J.
        • et al.
        Comparison of methods for obtaining longitudinal whole-brain magnetization transfer measurements.
        J Magn Reson Imaging. 2002; 15: 8-15
        • Steens S.C.
        • Bosma G.P.
        • Steup-Beekman G.M.
        • le Cessie S.
        • Huizinga T.W.
        • van Buchem M.A.
        Association between microscopic brain damage as indicated by magnetization transfer imaging and anticardiolipin antibodies in neuropsychiatric lupus.
        Arthritis Res Ther. 2006; 8: R38
        • Hofer S.
        • Frahm J.
        Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging.
        Neuroimage. 2006; 32: 989-994
        • Barkovich A.J.
        • Lyon G.
        • Evrard P.
        Formation, maturation, and disorders of white matter.
        AJNR Am J Neuroradiol. 1992; 13: 447-461
        • Perrin J.S.
        • Herve P.Y.
        • Leonard G.
        • Perron M.
        • Pike G.B.
        • Pitiot A.
        • et al.
        Growth of white matter in the adolescent brain: role of testosterone and androgen receptor.
        J Neurosci. 2008; 28: 9519-9524
        • Zikopoulos B.
        • Barbas H.
        Changes in prefrontal axons may disrupt the network in autism.
        J Neurosci. 2010; 30: 14595-14609
        • Voineagu I.
        • Wang X.
        • Johnston P.
        • Lowe J.K.
        • Tian Y.
        • Horvath S.
        • et al.
        Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
        Nature. 2011; 474: 380-384
        • Piven J.
        • Bailey J.
        • Ranson B.J.
        • Arndt S.
        An MRI study of the corpus callosum in autism.
        Am J Psychiatry. 1997; 154: 1051-1056
        • Cherkassky V.L.
        • Kana R.K.
        • Keller T.A.
        • Just M.A.
        Functional connectivity in a baseline resting-state network in autism.
        Neuroreport. 2006; 17: 1687-1690
        • Just M.A.
        • Cherkassky V.L.
        • Keller T.A.
        • Minshew N.J.
        Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity.
        Brain. 2004; 127: 1811-1821
        • Koshino H.
        • Carpenter P.A.
        • Minshew N.J.
        • Cherkassky V.L.
        • Keller T.A.
        • Just M.A.
        Functional connectivity in an fMRI working memory task in high-functioning autism.
        Neuroimage. 2005; 24: 810-821
        • Luna B.
        • Minshew N.J.
        • Garver K.E.
        • Lazar N.A.
        • Thulborn K.R.
        • Eddy W.F.
        • et al.
        Neocortical system abnormalities in autism: An fMRI study of spatial working memory.
        Neurology. 2002; 59: 834-840
        • Castelli F.
        • Frith C.
        • Happe F.
        • Frith U.
        Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes.
        Brain. 2002; 125: 1839-1849