Advertisement
Priority Communication| Volume 72, ISSUE 3, P182-190, August 01, 2012

Download started.

Ok

Reversal of Impaired Hippocampal Long-Term Potentiation and Contextual Fear Memory Deficits in Angelman Syndrome Model Mice by ErbB Inhibitors

      Background

      Angelman syndrome (AS) is a human neuropsychiatric disorder associated with autism, mental retardation, motor abnormalities, and epilepsy. In most cases, AS is caused by the deletion of the maternal copy of UBE3A gene, which encodes the enzyme ubiquitin ligase E3A, also termed E6-AP. A mouse model of AS has been generated and these mice exhibit many of the observed neurological alterations in humans. Because of clinical and neuroanatomical similarities between AS and schizophrenia, we examined AS model mice for alterations in the neuregulin-ErbB4 pathway, which has been implicated in the pathophysiology of schizophrenia. We focused our studies on the hippocampus, one of the major brain loci impaired in AS mice.

      Methods

      We determined the expression of neuregulin 1 and ErbB4 receptors in AS mice and wild-type littermates (ages 10–16 weeks) and studied the effects of ErbB inhibition on long-term potentiation in hippocampal area cornu ammonis 1 and on hippocampus-dependent contextual fear memory.

      Results

      We observed enhanced neuregulin-ErbB4 signaling in the hippocampus of AS model mice and found that ErbB inhibitors could reverse deficits in long-term potentiation, a cellular substrate for learning and memory. In addition, we found that an ErbB inhibitor enhanced long-term contextual fear memory in AS model mice.

      Conclusions

      Our findings suggest that neuregulin-ErbB4 signaling is involved in synaptic plasticity and memory impairments in AS model mice, suggesting that ErbB inhibitors have therapeutic potential for the treatment of AS.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lossie A.C.
        • Whitney M.M.
        • Amidon D.
        • Dong H.J.
        • Chen P.
        • Theriaque D.
        • et al.
        Distinct phenotypes distinguish the molecular classes of Angelman syndrome.
        J Med Genet. 2001; 38: 834-845
        • Williams C.A.
        • Beaudet A.L.
        • Clayton-Smith J.
        • Knoll J.H.
        • Kyllerman M.
        • Laan L.A.
        • et al.
        Angelman syndrome 2005: Updated consensus for diagnostic criteria.
        Am J Med Genet A. 2006; 140: 413-418
        • Kishino T.
        • Lalande M.
        • Wagstaff J.
        UBE3A/E6-AP mutations cause Angelman syndrome.
        Nat Genet. 1997; 15: 70-73
        • Knoll J.H.
        • Nicholls R.D.
        • Magenis R.E.
        • Graham Jr, J.M.
        • Lalande M.
        • Latt S.A.
        Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion.
        Am J Med Genet. 1989; 32: 285-290
        • Matsuura T.
        • Sutcliffe J.S.
        • Fang P.
        • Galjaard R.J.
        • Jiang Y.H.
        • Benton C.S.
        • et al.
        De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.
        Nat Genet. 1997; 15: 74-77
        • Sutcliffe J.S.
        • Jiang Y.H.
        • Galijaard R.J.
        • Matsuura T.
        • Fang P.
        • Kubota T.
        • et al.
        The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region.
        Genome Res. 1997; 7: 368-377
        • Gustin R.M.
        • Bichell T.J.
        • Bubser M.
        • Daily J.
        • Filonova I.
        • Mrelashvili D.
        • et al.
        Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome.
        Neurobiol Dis. 2010; 39: 283-291
        • Albrecht U.
        • Sutcliffe J.S.
        • Cattanach B.M.
        • Beechey C.V.
        • Armstrong D.
        • Eichele G.
        • Beaudet A.L.
        Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons.
        Nat Genet. 1997; 17: 75-78
        • Jiang Y.
        • Tsai T.F.
        • Bressler J.
        • Beaudet A.L.
        Imprinting in Angelman and Prader-Willi syndromes.
        Curr Opin Genet Dev. 1998; 8: 334-342
        • Jiang Y.H.
        • Armstrong D.
        • Albrecht U.
        • Atkins C.M.
        • Noebels J.L.
        • Eichele G.
        • et al.
        Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.
        Neuron. 1998; 21: 799-811
        • van Woerden G.M.
        • Harris K.D.
        • Hojjati M.R.
        • Gustin R.M.
        • Qiu S.
        • de Avila Freire R.
        • et al.
        Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation.
        Nat Neurosci. 2007; 10: 280-282
        • Holmes W.E.
        • Sliwkowski M.X.
        • Akita R.W.
        • Henzel W.J.
        • Lee J.
        • Park J.W.
        • et al.
        Identification of heregulin, a specific activator of p185erbB2.
        Science. 1992; 256: 1205-1210
        • Fischbach G.D.
        • Rosen K.M.
        ARIA: A neuromuscular junction neuregulin.
        Annu Rev Neurosci. 1997; 20: 429-458
        • Huang Y.Z.
        • Won S.
        • Ali D.W.
        • Wang Q.
        • Tanowitz M.
        • Du Q.S.
        • et al.
        Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses.
        Neuron. 2000; 26: 443-455
        • Kwon O.B.
        • Longart M.
        • Vullhorst D.
        • Hoffman D.A.
        • Buonanno A.
        Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses.
        J Neurosci. 2005; 25: 9378-9383
        • Pitcher G.M.
        • Beggs S.
        • Woo R.S.
        • Mei L.
        • Salter M.W.
        ErbB4 is a suppressor of long-term potentiation in the adult hippocampus.
        Neuroreport. 2008; 19: 139-143
        • Ehrlichman R.S.
        • Luminais S.N.
        • White S.L.
        • Rudnick N.D.
        • Ma N.
        • Dow H.C.
        • et al.
        Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions.
        Brain Res. 2009; 1294: 116-127
        • Hahn C.G.
        • Wang H.Y.
        • Cho D.S.
        • Talbot K.
        • Gur R.E.
        • Berrettini W.H.
        • et al.
        Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia.
        Nat Med. 2006; 12: 824-828
        • Mei L.
        • Xiong W.C.
        Neuregulin 1 in neural development, synaptic plasticity and schizophrenia.
        Nat Rev Neurosci. 2008; 9: 437-452
        • Corfas G.
        • Roy K.
        • Buxbaum J.D.
        Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia.
        Nat Neurosci. 2004; 7: 575-580
        • Stefansson H.
        • Sigurdsson E.
        • Steinthorsdottir V.
        • Bjornsdottir S.
        • Sigmundsson T.
        • Ghosh S.
        • et al.
        Neuregulin 1 and susceptibility to schizophrenia.
        Am J Hum Genet. 2002; 71: 877-892
        • Iossifov I.
        • Zheng T.
        • Baron M.
        • Gilliam T.C.
        • Rzhetsky A.
        Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network.
        Genome Res. 2008; 18: 1150-1162
        • Falls D.L.
        Neuregulins: Functions, forms, and signaling strategies.
        Exp Cell Res. 2003; 284: 14-30
        • Woo R.S.
        • Li X.M.
        • Tao Y.
        • Carpenter-Hyland E.
        • Huang Y.Z.
        • Weber J.
        • et al.
        Neuregulin-1 enhances depolarization-induced GABA release.
        Neuron. 2007; 54: 599-610
        • Sorkin A.
        • Goh L.K.
        Endocytosis and intracellular trafficking of ErbBs.
        Exp Cell Res. 2009; 315: 683-696
        • Sundvall M.
        • Korhonen A.
        • Paatero I.
        • Gaudio E.
        • Melino G.
        • Croce C.M.
        • et al.
        Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms.
        Proc Natl Acad Sci U S A. 2008; 105: 4162-4167
        • Dindot S.V.
        • Antalffy B.A.
        • Bhattacharjee M.B.
        • Beaudet A.L.
        The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology.
        Hum Mol Genet. 2007; 17: 111-118
        • Gu Z.
        • Jiang Q.
        • Fu A.K.
        • Ip N.Y.
        • Yan Z.
        Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex.
        J Neurosci. 2005; 25: 4974-4984
        • Lee H.K.
        • Takamiya K.
        • Han J.S.
        • Man H.
        • Kim C.H.
        • Rumbaugh G.
        • et al.
        Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory.
        Cell. 2003; 112: 631-643
        • Bjarnadottir M.
        • Misner D.L.
        • Haverfield-Gross S.
        • Bruun S.
        • Helgason V.G.
        • Stefansson H.
        • et al.
        Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: Differential synaptic function in NRG1+/- knock-outs compared with wild-type mice.
        J Neurosci. 2007; 27: 4519-4529
        • Kaushansky A.
        • Gordus A.
        • Budnik B.A.
        • Lane W.S.
        • Rush J.
        • MacBeath G.
        System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties.
        Chem Biol. 2008; 15: 808-817
        • Anton E.S.
        • Marchionni M.A.
        • Lee K.F.
        • Rakic P.
        Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex.
        Development. 1997; 124: 3501-3510
        • Roy K.
        • Murtie J.C.
        • El-Khodor B.F.
        • Edgar N.
        • Sardi S.P.
        • Hooks B.M.
        • et al.
        Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders.
        Proc Natl Acad Sci U S A. 2007; 104: 8131-8136
        • Gerecke K.M.
        • Wyss J.M.
        • Karavanova I.
        • Buonanno A.
        • Carroll S.L.
        ErbB transmembrane tyrosine kinase receptors are differentially expressed throughout the adult rat central nervous system.
        J Comp Neurol. 2001; 433: 86-100
        • Mizuno M.
        • Iwakura Y.
        • Shibuya M.
        • Zheng Y.
        • Eda T.
        • Kato T.
        • et al.
        Antipsychotic potential of quinazoline ErbB1 inhibitors in a schizophrenia model established with neonatal hippocampal lesioning.
        J Pharmacol Sci. 2010; 114: 320-331
        • Hakak Y.
        • Walker J.R.
        • Li C.
        • Wong W.H.
        • Davis K.L.
        • Buxbaum J.D.
        • et al.
        Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 4746-4751
        • Weeber E.J.
        • Jiang Y.H.
        • Elgersma Y.
        • Varga A.W.
        • Carrasquillo Y.
        • Brown S.E.
        • et al.
        Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome.
        J Neurosci. 2003; 23: 2634-2644
        • Chen Y.J.
        • Zhang M.
        • Yin D.M.
        • Wen L.
        • Ting A.
        • Wang P.
        • et al.
        ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation.
        Proc Natl Acad Sci U S A. 2010; 107: 21818-21823
        • Ehninger D.
        • Han S.
        • Shilyansky C.
        • Zhou Y.
        • Li W.
        • Kwiatkowski D.J.
        • et al.
        Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis.
        Nat Med. 2008; 14: 843-848
        • Hoeffer C.A.
        • Klann E.
        mTOR signaling: At the crossroads of plasticity, memory and disease.
        Trends Neurosci. 2010; 33: 67-75
        • Blundell J.
        • Kouser M.
        • Powell C.M.
        Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation.
        Neurobiol Learn Mem. 2008; 90: 28-35
        • Gafford G.M.
        • Parsons R.G.
        • Helmstetter F.J.
        Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus.
        Neuroscience. 2011; 182: 98-104
        • Krivosheya D.
        • Tapia L.
        • Levinson J.N.
        • Huang K.
        • Kang Y.
        • Hines R.
        • et al.
        ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms.
        J Biol Chem. 2008; 283: 32944-32956
        • Wen L.
        • Lu Y.S.
        • Zhu X.H.
        • Li X.M.
        • Woo R.S.
        • Chen Y.J.
        • et al.
        Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons.
        Proc Natl Acad Sci U S A. 2010; 107: 1211-1216
        • Neddens J.
        • Buonanno A.
        Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice.
        Hippocampus. 2010; 20: 724-744
        • Vullhorst D.
        • Neddens J.
        • Karavanova I.
        • Tricoire L.
        • Petralia R.S.
        • McBain C.J.
        • Buonanno A.
        Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus.
        J Neurosci. 2009; 29: 12255-12264
        • Laan L.A.
        • Vein A.A.
        Angelman syndrome: Is there a characteristic EEG?.
        Brain Dev. 2005; 27: 80-87
        • Fiumara A.
        • Pittala A.
        • Cocuzza M.
        • Sorge G.
        Epilepsy in patients with Angelman syndrome.
        Ital J Pediatr. 2010; 36: 31
        • Clayton-Smith J.
        • Laan L.
        Angelman syndrome: A review of the clinical and genetic aspects.
        J Med Genet. 2003; 40: 87-95
        • Noebels J.L.
        The biology of epilepsy genes.
        Annu Rev Neurosci. 2003; 26: 599-625
        • Steinlein O.K.
        Channelopathies can cause epilepsy in man.
        Eur J Pain. 2002; 6: 27-34
        • Steinlein O.K.
        • Bertrand D.
        Nicotinic receptor channelopathies and epilepsy.
        Pflugers Arch. 2010; 460: 495-503
        • Sotiriou E.
        • Papatheodoropoulos C.
        • Angelatou F.
        Differential expression of gamma-aminobutyric acid–a receptor subunits in rat dorsal and ventral hippocampus.
        J Neurosci Res. 2005; 82: 690-700
        • Hentschke H.
        • Benkwitz C.
        • Banks M.I.
        • Perkins M.G.
        • Homanics G.E.
        • Pearce R.A.
        Altered GABAA, slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit.
        J Neurophysiol. 2009; 102: 3643-3655
        • Dan B.
        Angelman syndrome: Current understanding and research prospects.
        Epilepsia. 2009; 50: 2331-2339
        • Fernandez F.
        • Morishita W.
        • Zuniga E.
        • Nguyen J.
        • Blank M.
        • Malenka R.C.
        • Garner C.C.
        Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome.
        Nat Neurosci. 2007; 10: 411-413
        • Bhattacharyya A.
        • McMillan E.
        • Chen S.I.
        • Wallace K.
        • Svendsen C.N.
        A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells.
        Dev Neurosci. 2009; 31: 497-510
        • Perez-Cremades D.
        • Hernandez S.
        • Blasco-Ibanez J.M.
        • Crespo C.
        • Nacher J.
        • Varea E.
        Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome.
        J Neural Transm. 2010; 117: 445-455
        • Rachidi M.
        • Lopes C.
        Mental retardation and associated neurological dysfunctions in Down syndrome: A consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.
        Eur J Paediatr Neurol. 2008; 12: 168-182
        • Olmos-Serrano J.L.
        • Paluszkiewicz S.M.
        • Martin B.S.
        • Kaufmann W.E.
        • Corbin J.G.
        • Huntsman M.M.
        Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome.
        J Neurosci. 2010; 30: 9929-9938
        • Selby L.
        • Zhang C.
        • Sun Q.Q.
        Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein.
        Neurosci Lett. 2007; 412: 227-232

      Linked Article