Advertisement
Archival Report| Volume 71, ISSUE 10, P922-930, May 15, 2012

Download started.

Ok

MAGI1 Copy Number Variation in Bipolar Affective Disorder and Schizophrenia

      Background

      Bipolar affective disorder (BPAD) and schizophrenia (SZ) are devastating psychiatric disorders that each affect about 1% of the population worldwide. Identification of new drug targets is an important step toward better treatment of these poorly understood diseases.

      Methods

      Genome-wide copy number variation (CNV) was assessed and variants were ranked by co-occurrence with disease in 48 BPAD families. Additional support for involvement of the highest-ranking CNV from the family-based analysis in psychiatric disease was obtained through analysis of 4084 samples with BPAD, SZ, or schizoaffective disorder. Finally, a pooled analysis of in-house and published datasets was carried out including 10,925 cases with BPAD, SZ, or schizoaffective disorder and 16,747 controls.

      Results

      In the family-based analysis, an approximately 200 kilobase (kb) deletion in the first intron of the MAGI1 gene was identified that segregated with BPAD in a pedigree (six out of six affected individuals; parametric logarithm of the odds score = 1.14). In the pooled analysis, seven additional insertions or deletions over 100 kb were identified in MAGI1 in cases, while only two such CNV events were identified in the same gene in controls (p = .023; Fisher's exact test). Because earlier work had identified a CNV in the close relative MAGI2 in SZ, the study was extended to include MAGI2. In the pooled analysis of MAGI2, two large deletions were found in cases, and two duplications were detected in controls.

      Conclusions

      Results presented herein provide further evidence for a role of MAGI1 and MAGI2 in BPAD and SZ etiology.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lichtenstein P.
        • Yip B.H.
        • Björk C.
        • Pawitan Y.
        • Cannon T.D.
        • Sullivan P.F.
        • Hultman C.M.
        Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study.
        Lancet. 2009; 373: 234-239
        • Craddock N.
        • Owen M.J.
        The Kraepelinian dichotomy - going, going … but still not gone.
        Br J Psychiatry. 2010; 196: 92-95
        • Ferreira M.A.R.
        • O'Donovan M.C.
        • Meng Y.A.
        • Jones I.R.
        • Ruderfer D.M.
        • Jones L.
        • et al.
        Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.
        Nat Genet. 2008; 40: 1056-1058
        • Scott L.J.
        • Muglia P.
        • Kong X.Q.
        • Guan W.
        • Flickinger M.
        • Upmanyu R.
        • et al.
        Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry.
        Proc Natl Acad Sci U S A. 2009; 106: 7501-7506
        • Shi J.
        • Levinson D.F.
        • Duan J.
        • Sanders A.R.
        • Zheng Y.
        • Pe'er I.
        • et al.
        Common variants on chromosome 6p22.1 are associated with schizophrenia.
        Nature. 2009; 460: 753-757
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • The International Schizophrenia Consortium
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium
        Genome-wide association study identifies five new schizophrenia loci.
        Nat Genet. 2011; 43: 969-976
        • The International Schizophrenia Consortium
        Rare chromosomal deletions and duplications increase risk of schizophrenia.
        Nature. 2008; 455: 237-241
        • Zhang D.
        • Cheng L.
        • Qian Y.
        • Alliey-Rodriguez N.
        • Kelsoe J.R.
        • Greenwood T.
        • et al.
        Singleton deletions throughout the genome increase risk of bipolar disorder.
        Mol Psychiatry. 2008; 14: 376-380
        • Grozeva D.
        • Kirov G.
        • Ivanov D.
        • Jones I.R.
        • Jones L.
        • Green E.K.
        • et al.
        Rare copy number variants: A point of rarity in genetic risk for bipolar disorder and schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 318-327
        • Ross J.
        • Berrettini W.
        • Coryell W.
        • Gershon E.S.
        • Badner J.A.
        • Kelsoe J.R.
        • et al.
        Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20.
        Psychiatr Genet. 2008; 18: 191-198
        • Wang K.
        • Li M.
        • Hadley D.
        • Liu R.
        • Glessner J.
        • Grant S.F.A.
        • et al.
        PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.
        Genome Res. 2007; 17: 1665-1674
        • Dellinger A.E.
        • Saw S.-M.
        • Goh L.K.
        • Seielstad M.
        • Young T.L.
        • Li Y.-J.
        Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays.
        Nucleic Acids Res. 2010; 38: e105
        • Iafrate A.J.
        • Feuk L.
        • Rivera M.N.
        • Listewnik M.L.
        • Donahoe P.K.
        • Qi Y.
        • et al.
        Detection of large-scale variation in the human genome.
        Nat Genet. 2004; 36: 949-951
        • Zhang D.
        • Qian Y.
        • Akula N.
        • Alliey-Rodriguez N.
        • Tang J.
        • et al.
        • Bipolar Genome Study
        Accuracy of CNV detection from GWAS data.
        PLoS ONE. 2011; 6: e14511
        • Walsh T.
        • McClellan J.M.
        • McCarthy S.E.
        • Addington A.M.
        • Pierce S.B.
        • Cooper G.M.
        • et al.
        Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.
        Science. 2008; 320: 539-543
        • Kirov G.
        • Grozeva D.
        • Norton N.
        • Ivanov D.
        • Mantripragada K.K.
        • Holmans P.
        • et al.
        Support for the involvement of large copy number variants in the pathogenesis of schizophrenia.
        Hum Mol Genet. 2009; 18: 1497-1503
        • R Development Core Team
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna2009
        • Kong A.
        • Cox N.J.
        Allele-sharing models: LOD scores and accurate linkage tests.
        Am J Hum Genet. 1997; 61: 1179-1188
        • Abecasis G.R.
        • Cherny S.S.
        • Cookson W.O.C.
        • Cardon L.R.
        GRR: Graphical representation of relationship errors.
        Bioinformatics. 2001; 17: 742-743
        • de Lara C.L.
        • Jaitovich-Groisman I.
        • Cruceanu C.
        • Mamdani F.
        • Lebel V.
        • Yerko V.
        • et al.
        Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses.
        Int J Neuropsychopharmacol. 2010; 13: 1397-1410
        • Cichon S.
        • Schumacher J.
        • Müller D.J.
        • Hürter M.
        • Windemuth C.
        • Strauch K.
        • et al.
        A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q.
        Hum Mol Genet. 2001; 10: 2933-2944
        • Etain B.
        • Mathieu F.
        • Rietschel M.
        • Maier W.
        • Albus M.
        • Mckeon P.
        • et al.
        Genome-wide scan for genes involved in bipolar affective disorder in 70 European families ascertained through a bipolar type I early-onset proband: Supportive evidence for linkage at 3p14.
        Mol Psychiatry. 2006; 11: 685-694
        • Venken T.
        • Claes S.
        • Sluijs S.
        • Paterson A.D.
        • van Duijn C.
        • Adolfsson R.
        • et al.
        Genomewide scan for affective disorder susceptibility loci in families of a northern Swedish isolated population.
        Am J Hum Genet. 2005; 76: 237-248
        • Cooper G.M.
        • Coe B.P.
        • Girirajan S.
        • Rosenfeld J.A.
        • Vu T.H.
        • Baker C.
        • et al.
        A copy number variation morbidity map of developmental delay.
        Nat Genet. 2011; 43: 838-846
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Ingason A.
        • Rujescu D.
        • Cichon S.
        • Sigurdsson E.
        • Sigmundsson T.
        • Pietilainen O.P.H.
        • et al.
        Copy number variations of chromosome 16p13.1 region associated with schizophrenia.
        Mol Psychiatry. 2011; 16: 17-25
        • Kirov G.
        • Pocklington A.J.
        • Holmans P.
        • Ivanov D.
        • Ikeda M.
        • Ruderfer D.
        • et al.
        De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.
        Mol Psychiatry. 2012; 17: 142-153
        • Hogervorst F.B.L.
        • Nederlof P.M.
        • Gille J.J.P.
        • McElgunn C.J.
        • Grippeling M.
        • Pruntel R.
        • et al.
        Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method.
        Cancer Res. 2003; 63: 1449-1453
        • Iida J.
        • Hirabayashi S.
        • Sato Y.
        • Hata Y.
        Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin.
        Mol Cell Neurosci. 2004; 27: 497-508
        • Nishimura W.
        • Yao I.
        • Iida J.
        • Tanaka N.
        • Hata Y.
        Interaction of synaptic scaffolding molecule and beta-catenin.
        J Neurosci. 2002; 22: 757-765
        • Buxbaum J.D.
        • Georgieva L.
        • Young J.J.
        • Plescia C.
        • Kajiwara Y.
        • Jiang Y.
        • et al.
        Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene.
        Mol Psychiatry. 2007; 13: 162-172
        • Emtage L.
        • Chang H.
        • Tiver R.
        • Rongo C.
        MAGI-1 modulates AMPA receptor synaptic localization and behavioral plasticity in response to prior experience.
        PLoS ONE. 2009; 4: e4613
        • Kirov G.
        • Gumus D.
        • Chen W.
        • Norton N.
        • Georgieva L.
        • Sari M.
        • et al.
        Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.
        Hum Mol Genet. 2008; 17: 458-465
        • Rujescu D.
        • Ingason A.
        • Cichon S.
        • Pietilainen O.P.H.
        • Barnes M.R.
        • Toulopoulou T.
        • et al.
        Disruption of the neurexin 1 gene is associated with schizophrenia.
        Hum Mol Genet. 2009; 18: 988-996
        • Carroll L.S.
        • Owen M.J.
        Genetic overlap between autism, schizophrenia and bipolar disorder.
        Genome Med. 2009; 1: 102
        • Bachmann R.
        • Schloesser R.
        • Gould T.
        • Manji H.
        Mood stabilizers target cellular plasticity and resilience cascades.
        Mol Neurobiol. 2005; 32: 173-202
        • Kranjec C.
        • Banks L.
        A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions.
        J Virol. 2011; 85: 1757-1764
        • Paunio T.
        • Arajärvi R.
        • Terwilliger J.D.
        • Hiekkalinna T.
        • Haimi P.
        • Partonen T.
        • et al.
        Linkage analysis of schizophrenia controlling for population substructure.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 827-835
        • Sebat J.
        • Lakshmi B.
        • Troge J.
        • Alexander J.
        • Young J.
        • Lundin P.
        • et al.
        Large-scale copy number polymorphism in the human genome.
        Science. 2004; 305: 525-528
        • Itsara A.
        • Cooper G.M.
        • Baker C.
        • Girirajan S.
        • Li J.
        • Absher D.
        • et al.
        Population analysis of large copy number variants and hotspots of human genetic disease.
        Am J Hum Genet. 2009; 84: 148-161
        • Uddin M.
        • Sturge M.
        • Rahman P.
        • Woods M.O.
        Autosome-wide copy number variation association analysis for rheumatoid arthritis using the WTCCC high-density SNP genotype data.
        J Rheumatol. 2011; 38: 797-801
        • Conrad D.F.
        • Pinto D.
        • Redon R.
        • Feuk L.
        • Gokcumen O.
        • Zhang Y.
        • et al.
        Origins and functional impact of copy number variation in the human genome.
        Nature. 2010; 464: 704-712
        • Shaikh T.H.
        • Gai X.
        • Perin J.C.
        • Glessner J.T.
        • Xie H.
        • Murphy K.
        • et al.
        High-resolution mapping and analysis of copy number variations in the human genome: A data resource for clinical and research applications.
        Genome Res. 2009; 19: 1682-1690