T Lymphocytes and Vascular Inflammation Contribute to Stress-Dependent Hypertension

Published:February 23, 2012DOI:


      Psychological stress is a significant risk factor for hypertension and also directly affects the immune system. We have previously reported that T lymphocytes are essential for development of hypertension and that the central nervous system contributes to peripheral T-lymphocyte activation and vascular inflammation in this disease; however, the role of T-cell activation in stress-related hypertension remains unclear.


      Wild-type and T-cell-deficient (RAG-1−/−) mice were subjected to daily episodes of stress and blood pressure was measured. Circulating T-cell activation markers and vascular infiltration of immune cells were analyzed, as were stress hormone levels and gene expression changes in the brain. The effects angiotensin II infusion in the presence of chronic stress was also studied.


      Repeated daily stress contributed to acute elevations in blood pressure that were associated with increased activation of circulating T cells and increased vascular infiltration of T cells. Repeated stress increased blood pressure in wild-type but not RAG-1−/− mice. Adoptive transfer of T cells to RAG-1−/− mice restored blood pressure elevation in response to stress. Stress-related hypertension and vascular infiltration of T cells was markedly enhanced by angiotensin II. Moreover, angiotensin II–infused mice exposed to chronic stress exhibited greater blood pressure reactivity to an episode of acute stress.


      These data demonstrate that stress-dependent hypertension triggers an inflammatory response that raises blood pressure at baseline and augments the hypertension caused by angiotensin II. These data provide insight as to how psychological stress contributes to hypertension.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gasperin D.
        • Netuveli G.
        • Dias-da-Costa J.S.
        • Pattussi M.P.
        Effect of psychological stress on blood pressure increase: A meta-analysis of cohort studies.
        Cad Saude Publica. 2009; 25: 715-726
        • Esler M.
        • Eikelis N.
        • Schlaich M.
        • Lambert G.
        • Alvarenga M.
        • Dawood T.
        • et al.
        Chronic mental stress is a cause of essential hypertension: Presence of biological markers of stress.
        Clin Exp Pharmacol Physiol. 2008; 35: 498-502
        • Matthews K.A.
        • Katholi C.R.
        • McCreath H.
        • Whooley M.A.
        • Williams D.R.
        • Zhu S.
        • et al.
        Blood pressure reactivity to psychological stress predicts hypertension in the cardia study.
        Circulation. 2004; 110: 74-78
        • Gillespie C.F.
        • Bradley B.
        • Mercer K.
        • Smith A.K.
        • Conneely K.
        • Gapen M.
        • et al.
        Trauma exposure and stress-related disorders in inner city primary care patients.
        Gen Hosp Psychiatry. 2009; 31: 505-514
        • Strogatz D.S.
        • Croft J.B.
        • James S.A.
        • Keenan N.L.
        • Browning S.R.
        • Garrett J.M.
        • et al.
        Social support, stress, and blood pressure in black adults.
        Epidemiology. 1997; 8: 482-487
        • Lambert E.
        • Dawood T.
        • Straznicky N.
        • Sari C.
        • Schlaich M.
        • Esler M.
        • et al.
        Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure.
        J Hypertens. 2010; 28: 543-550
        • Marvar P.J.
        • Gordon F.J.
        • Harrison D.G.
        Blood pressure control: Salt gets under your skin.
        Nat Med. 2009; 15: 487-488
        • Harrison D.G.
        • Guzik T.J.
        • Lob H.E.
        • Madhur M.S.
        • Marvar P.J.
        • Thabet S.R.
        • et al.
        Inflammation, immunity, and hypertension.
        Hypertension. 2011; 57: 132-140
        • Muller D.N.
        • Kvakan H.
        • Luft F.C.
        Immune-related effects in hypertension and target-organ damage.
        Curr Opin Nephrol Hypertens. 2011; 20: 113-117
        • Guzik T.J.
        • Hoch N.E.
        • Brown K.A.
        • McCann L.A.
        • Rahman A.
        • Dikalov S.
        • et al.
        Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction.
        J Exp Med. 2007; 204: 2449-2460
        • Crowley S.D.
        • Song Y.S.
        • Lin E.E.
        • Griffiths R.
        • Kim H.S.
        • Ruiz P.
        Lymphocyte responses exacerbate angiotensin II–dependent hypertension.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R1089-R1097
        • De Miguel C.
        • Das S.
        • Lund H.
        • Mattson D.L.
        T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R1136-R1142
        • Madhur M.S.
        • Lob H.E.
        • McCann L.A.
        • Iwakura Y.
        • Blinder Y.
        • Guzik T.J.
        • et al.
        Interleukin 17 promotes angiotensin II–induced hypertension and vascular dysfunction.
        Hypertension. 2010; 55: 500-507
        • Guyenet P.G.
        The sympathetic control of blood pressure.
        Nat Rev Neurosci. 2006; 7: 335-346
        • Brody M.J.
        Central nervous system and mechanisms of hypertension.
        Clin Physiol Biochem. 1988; 6: 230-239
        • Brody M.J.
        • Johnson A.K.
        Role of the Anteroventral Third Ventricle Region in Fluid and Electrolyte Balance, Arterial Pressure Regulation, and Hypertension (Frontiers in Neuroendocrinology).
        Raven Press, New York1980
        • Marvar P.J.
        • Thabet S.R.
        • Guzik T.J.
        • Lob H.E.
        • McCann L.A.
        • Weyand C.
        • et al.
        Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II–induced hypertension.
        Circ Res. 2010; 107: 263-270
        • Swanson L.W.
        • Lind R.W.
        Neural projections subserving the initiation of a specific motivated behavior in the rat: New projections from the subfornical organ.
        Brain Res. 1986; 379: 399-403
        • Sunn N.
        • McKinley M.J.
        • Oldfield B.J.
        Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis.
        J Neuroendocrinol. 2003; 15: 725-731
        • Lob H.E.
        • Marvar P.J.
        • Guzik T.J.
        • Sharma S.
        • McCann L.A.
        • Weyand C.
        • et al.
        Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system.
        Hypertension. 2010; 55: 277-283
        • Pellow S.
        • Chopin P.
        • File S.E.
        • Briley M.
        Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.
        J Neurosci Methods. 1985; 14: 149-167
        • Paxinos G.
        • Franklin K.
        The Mouse Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA2006
        • Harrison D.G.
        • Vinh A.
        • Lob H.
        • Madhur M.S.
        Role of the adaptive immune system in hypertension.
        Curr Opin Pharmacol. 2010; 10: 203-207
        • Lucini D.
        • Di Fede G.
        • Parati G.
        • Pagani M.
        Impact of chronic psychosocial stress on autonomic cardiovascular regulation in otherwise healthy subjects.
        Hypertension. 2005; 46: 1201-1206
        • Nyklicek I.
        • Bosch J.A.
        • Amerongen A.V.
        A generalized physiological hyperreactivity to acute stressors in hypertensives.
        Biol Psychol. 2005; 70: 44-51
        • Groeschel M.
        • Braam B.
        Connecting chronic and recurrent stress to vascular dysfunction: No relaxed role for the renin-angiotensin system.
        Am J Physiol Renal Physiol. 2011; 300: F1-F10
        • Hoch N.E.
        • Guzik T.J.
        • Chen W.
        • Deans T.
        • Maalouf S.A.
        • Gratze P.
        • et al.
        Regulation of T-cell function by endogenously produced angiotensin II.
        Am J Physiol Regul Integr Comp Physiol. 2009; 296: R208-R216
        • Boone J.L.
        Stress and hypertension.
        Prim Care. 1991; 18: 623-649
        • Kaplan M.S.
        • Nunes A.
        The psychosocial determinants of hypertension.
        Nutr Metab Cardiovasc Dis. 2003; 13: 52-59
        • Davern P.J.
        • Chen D.
        • Head G.A.
        • Chavez C.A.
        • Walther T.
        • Mayorov D.N.
        Role of angiotensin II type 1a receptors in cardiovascular reactivity and neuronal activation after aversive stress in mice.
        Hypertension. 2009; 54: 1262-1268
        • Lee D.L.
        • Webb R.C.
        • Brands M.W.
        Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice.
        Am J Physiol Regul Integr Comp Physiol. 2004; 287: R1394-R1398
        • Alkadhi K.A.
        • Alzoubi K.H.
        • Aleisa A.M.
        • Tanner F.L.
        • Nimer A.S.
        Psychosocial stress-induced hypertension results from in vivo expression of long-term potentiation in rat sympathetic ganglia.
        Neurobiol Dis. 2005; 20: 849-857
        • Bechtold A.G.
        • Patel G.
        • Hochhaus G.
        • Scheuer D.A.
        Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress.
        Am J Physiol Regul Integr Comp Physiol. 2009; 296: R1445-R1454
        • McDougall S.J.
        • Paull J.R.
        • Widdop R.E.
        • Lawrence A.J.
        Restraint stress: Differential cardiovascular responses in Wistar-Kyoto and spontaneously hypertensive rats.
        Hypertension. 2000; 35: 126-129
        • Henry J.P.
        • Liu Y.Y.
        • Nadra W.E.
        • Qian C.G.
        • Mormede P.
        • Lemaire V.
        • et al.
        Psychosocial stress can induce chronic hypertension in normotensive strains of rats.
        Hypertension. 1993; 21: 714-723
        • Cowley Jr, A.W.
        The genetic dissection of essential hypertension.
        Nat Rev Genet. 2006; 7: 829-840
        • Nalivaiko E.
        Animal models of psychogenic cardiovascular disorders: What we can learn from them and what we cannot.
        Clin Exp Pharmacol Physiol. 2011; 38: 115-125
        • Beetz N.
        • Harrison M.D.
        • Brede M.
        • Zong X.
        • Urbanski M.J.
        • Sietmann A.
        • et al.
        Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice.
        J Clin Invest. 2009; 119: 3597-3612
        • Krause E.G.
        • de Kloet A.D.
        • Scott K.A.
        • Flak J.N.
        • Jones K.
        • Smeltzer M.D.
        • et al.
        Blood-borne angiotensin II acts in the brain to influence behavioral and endocrine responses to psychogenic stress.
        J Neurosci. 2011; 31: 15009-15015
        • Saavedra J.M.
        • Sanchez-Lemus E.
        • Benicky J.
        Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications.
        Psychoneuroendocrinology. 2011; 36: 1-18
      1. Khoury N, Marvar PJ, Gillespie C, Wingo A, Schwartz A, Bradley B, et al. (in press): The renin-angiotensin pathway in PTSD: ACE inhibitor and ARB medications are associated with fewer traumatic stress symptoms. J Clin Psychiatry.

        • Coffman T.M.
        Under pressure: The search for the essential mechanisms of hypertension.
        Nat Med. 2011; 17: 1402-1409
        • Dhabhar F.S.
        Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology.
        Neuroimmunomodulation. 2009; 16: 300-317
        • Lowry C.A.
        • Moore F.L.
        Regulation of behavioral responses by corticotropin-releasing factor.
        Gen Comp Endocrinol. 2006; 146: 19-27
        • Kannan H.
        • Hayashida Y.
        • Yamashita H.
        Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats.
        Am J Physiol. 1989; 256: R1325-R1330
        • Li Y.F.
        • Mayhan W.G.
        • Patel K.P.
        NMDA-mediated increase in renal sympathetic nerve discharge within the PVN: Role of nitric oxide.
        Am J Physiol Heart Circ Physiol. 2001; 281: H2328-H2336
        • Busnardo C.
        • Tavares R.F.
        • Resstel L.B.
        • Elias L.L.
        • Correa F.M.
        Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats.
        Auton Neurosci. 2010; 158: 51-57
        • Hashimoto K.
        • Makino S.
        • Hirasawa R.
        • Takao T.
        • Sugawara M.
        • Murakami K.
        • et al.
        Abnormalities in the hypothalamo-pituitary-adrenal axis in spontaneously hypertensive rats during development of hypertension.
        Endocrinology. 1989; 125: 1161-1167
        • Imaki T.
        • Naruse M.
        • Harada S.
        • Chikada N.
        • Nakajima K.
        • Yoshimoto T.
        • et al.
        Stress-induced changes of gene expression in the paraventricular nucleus are enhanced in spontaneously hypertensive rats.
        J Neuroendocrinol. 1998; 10: 635-643
        • Porter K.
        • Hayward L.F.
        Stress-induced changes in c-fos and corticotropin releasing hormone immunoreactivity in the amygdala of the spontaneously hypertensive rat.
        Behav Brain Res. 2011; 216: 543-551
        • Glaser R.
        • Kiecolt-Glaser J.K.
        Stress-induced immune dysfunction: Implications for health.
        Nat Rev Immunol. 2005; 5: 243-251
        • Viswanathan K.
        • Dhabhar F.S.
        Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation.
        Proc Natl Acad Sci U S A. 2005; 102: 5808-5813
        • Madden K.S.
        • Sanders V.M.
        • Felten D.L.
        Catecholamine influences and sympathetic neural modulation of immune responsiveness.
        Annu Rev Pharmacol Toxicol. 1995; 35: 417-448
        • Swanson M.A.
        • Lee W.T.
        • Sanders V.M.
        IFN-gamma production by TH1 cells generated from naive CD4+ T cells exposed to norepinephrine.
        J Immunol. 2001; 166: 232-240
        • Vinh A.
        • Chen W.
        • Blinder Y.
        • Weiss D.
        • Taylor W.R.
        • Goronzy J.J.
        • et al.
        Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension.
        Circulation. 2010; 122: 2529-2537
        • Madhur M.S.
        • Lob H.E.
        • McCann L.A.
        • Iwakura Y.
        • Blinder Y.
        • Guzik T.J.
        • et al.
        Interleukin 17 promotes angiotensin II–induced hypertension and vascular dysfunction.
        Hypertension. 2010; 55: 500-507
        • Bosch J.A.
        • Berntson G.G.
        • Cacioppo J.T.
        • Dhabhar F.S.
        • Marucha P.T.
        Acute stress evokes selective mobilization of T cells that differ in chemokine receptor expression: A potential pathway linking immunologic reactivity to cardiovascular disease.
        Brain Behav Immun. 2003; 17: 251-259
        • Flint M.S.
        • Budiu R.A.
        • Teng P.N.
        • Sun M.
        • Stolz D.B.
        • Lang M.
        • et al.
        Restraint stress and stress hormones significantly impact T lymphocyte migration and function through specific alterations of the actin cytoskeleton.
        Brain Behav Immun. 2011; 25: 1187-1196
        • Huang M.
        • Pang X.
        • Karalis K.
        • Theoharides T.C.
        Stress-induced interleukin-6 release in mice is mast cell-dependent and more pronounced in apolipoprotein E knockout mice.
        Cardiovasc Res. 2003; 59: 241-249
        • Merlot E.
        • Moze E.
        • Dantzer R.
        • Neveu P.J.
        Cytokine production by spleen cells after social defeat in mice: Activation of T cells and reduced inhibition by glucocorticoids.
        Stress. 2004; 7: 55-61
        • Mills P.J.
        • Farag N.H.
        • Hong S.
        • Kennedy B.P.
        • Berry C.C.
        • Ziegler M.G.
        Immune cell CD62l and CD11a expression in response to a psychological stressor in human hypertension.
        Brain Behav Immun. 2003; 17: 260-267
        • Dendorfer A.
        • Thornagel A.
        • Raasch W.
        • Grisk O.
        • Tempel K.
        • Dominiak P.
        Angiotensin II induces catecholamine release by direct ganglionic excitation.
        Hypertension. 2002; 40: 348-354
        • Weiner N.
        Multiple factors regulating the release of norepinephrine consequent to nerve stimulation.
        Fed Proc. 1979; 38: 2193-2202
        • Evans R.G.
        • Head G.A.
        • Eppel G.A.
        • Burke S.L.
        • Rajapakse N.W.
        Angiotensin II and neurohumoral control of the renal medullary circulation.
        Clin Exp Pharmacol Physiol. 2010; 37: e58-e69
        • Suzuki Y.
        • Ruiz-Ortega M.
        • Lorenzo O.
        • Ruperez M.
        • Esteban V.
        • Egido J.
        Inflammation and angiotensin II.
        Int J Biochem Cell Biol. 2003; 35: 881-900
        • Ferrario C.M.
        • Strawn W.B.
        Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease.
        Am J Cardiol. 2006; 98: 121-128
        • Aguilera G.
        • Kiss A.
        • Luo X.
        • Akbasak B.S.
        The renin angiotensin system and the stress response.
        Ann N Y Acad Sci. 1995; 771: 173-186
        • McDougall S.J.
        • Lawrence A.J.
        • Widdop R.E.
        Differential cardiovascular responses to stressors in hypertensive and normotensive rats.
        Exp Physiol. 2005; 90: 141-150