Advertisement

Fronto-Striato-Cerebellar Dysregulation in Adolescents with Depression During Motivated Attention

      Background

      Pediatric major depressive disorder (MDD) is associated with deficits in sustained attention, thought to be related to underlying motivation deficits. This hypothesis, however, has never directly been tested using functional magnetic resonance imaging. In this study, we investigated the neurofunctional correlates of the interplay between attention and motivation in medication-naive pediatric MDD using a rewarded sustained attention task.

      Methods

      Functional magnetic resonance imaging was used to compare brain activation between 20 medication-naïve, noncomorbid, first-episode adolescents with MDD aged 13 to 18 years and 21 gender-, age-, and IQ-matched healthy adolescents. Participants performed a sustained attention task with and without a monetary reward to assess the impact of reward on sustained attention networks.

      Results

      During nonrewarded sustained attention, adolescents with MDD showed reduced activation compared with healthy control subjects in occipital cortex. When sustained attention was rewarded, however, the underactivation in adolescents with MDD was in an extensive right hemispheric network of inferior fronto-striato-thalamic attention and limbic hippocampus-anterior cingulate reward processing areas. Major depressive disorder patients showed increased activation in cerebellum, which correlated with reduced frontal activation and depressive symptoms, suggesting compensatory response. Further analysis showed that reward upregulated fronto-striatal and hippocampal/temporal activation in control subjects but deactivated these regions in MDD, with opposite effects in the cerebellum.

      Conclusions

      Medication-naïve MDD adolescents show abnormalities in the regulation in fronto-striato-cerebellar brain regions involved in attention and reward during motivated but not unmotivated attention. This suggests a dysfunctional interplay between motivation and cognition in pediatric MDD, where motivation appears less capable of upregulating attention networks relative to healthy youths.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American, Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. American Psychiatric Press, Washington DC1994
        • Rao U.
        • Chen L.-A.
        Characteristics, correlates, and outcomes of childhood and adolescent depressive disorders.
        Dialogues Clin Neurosci. 2009; 11: 45-62
        • Robbins D.
        • Alessi N.
        Depressive symptoms and suicidal behavior in adolescents.
        Am J Psychiatry. 1985; 142: 588-592
        • Ryan N.D.
        • Puig-Antich J.
        • Ambrosini P.
        • Rabinovich H.
        • Robinson D.
        • Nelson B.
        • et al.
        The clinical picture of major depression in children and adolescents.
        Arch Gen Psychiatry. 1987; 44: 854-861
        • Romney D.M.
        • Candido C.L.
        Anhedonia in depression and schizophrenia: A reexamination.
        J Nerv Ment Dis. 2001; 189: 735-740
        • Keedwell P.A.
        • Andrew C.
        • Williams S.C.R.
        • Brammer M.J.
        • Phillips M.L.
        The neural correlates of anhedonia in major depressive disorder.
        Biol Psychiatry. 2005; 58: 843-853
        • Forbes E.E.
        • Shaw D.S.
        • Dahl R.E.
        Alterations in reward-related decision making in boys with recent and future depression.
        Biol Psychiatry. 2007; 61: 633-639
        • Must A.
        • Szabó Z.
        • Bódi N.
        • Szász A.
        • Janka Z.
        • Kéri S.
        Sensitivity to reward and punishment and the prefrontal cortex in major depression.
        J Affect Disord. 2006; 90: 209-215
        • Pizzagalli D.A.
        • Iosifescu D.
        • Hallett L.A.
        • Ratner K.G.
        • Fava M.
        Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task.
        J Psychiatr Res. 2008; 43: 76-87
        • Henriques J.B.
        • Davidson R.J.
        Decreased responsiveness to reward in depression.
        Cogn Emot. 2000; 14: 711-724
        • Tomporowski P.D.
        • Tinsley V.F.
        Effects of memory demand and motivation on sustained attention in young and older adults.
        Am J Psychol. 1996; 109: 187-204
        • Mialet J.-P.
        • Pope H.G.
        • Yurgelun-Todd D.
        Impaired attention in depressive states: A non-specific deficit?.
        Psychol Med. 1996; 26: 1009-1020
        • Koetsier G.C.
        • Volkers A.C.
        • Tulen J.H.M.
        • Passchier J.
        • van den Broek W.W.
        • Bruijn J.A.
        CPT performance in major depressive disorder before and after treatment with imipramine or fluvoxamine.
        J Psychiatr Res. 2002; 36: 391-397
        • Cataldo M.G.
        • Nobile M.
        • Lorusso M.L.
        • Battaglia M.
        • Molteni M.
        Impulsivity in depressed children and adolescents: A comparison between behavioral and neuropsychological data.
        Psychiatry Res. 2005; 136: 123-133
        • Austin M.P.
        • Ross M.
        • Murray C.
        • O'Carroll R.E.
        • Ebmeier K.P.
        • Goodwin G.M.
        Cognitive function in major depression.
        J Affect Disord. 1992; 25: 21-29
        • Cornblatt B.A.
        • Lenzenweger M.F.
        • Erlenmeyer-Kimling L.
        The continuous performance test, identical pairs version: II.
        Psychiatry Res. 1989; 29: 65-85
        • Schatzberg A.F.
        • Posener J.A.
        • DeBattista C.
        • Kalehzan B.M.
        • Rothschild A.J.
        • Shear P.K.
        Neuropsychological deficits in psychotic versus nonpsychotic major depression and no mental illness.
        Am J Psychiatry. 2000; 157: 1095-1100
        • Richards P.M.
        • Ruff R.M.
        Motivational effects on neuropsychological functioning: Comparison of depressed versus nondepressed individuals.
        J Consult Clin Psychol. 1989; 57: 396-402
        • Porter R.J.
        • Gallagher P.
        • Thompson J.M.
        • Young A.H.
        Neurocognitive impairment in drug-free patients with major depressive disorder.
        Br J Psychiatry. 2003; 182: 214-220
        • Gualtieri C.T.
        • Johnson L.G.
        • Benedict K.B.
        Neurocognition in depression: Patients on and off medication versus healthy comparison subjects.
        J Neuropsychiatry Clin Neurosci. 2006; 18: 217-225
        • Austin M.-P.
        • Mitchell P.
        • Goodwin G.M.
        Cognitive deficits in depression: Possible implications for functional neuropathology.
        Br J Psychiatry. 2001; 178: 200-206
        • Hardin M.G.
        • Schroth E.
        • Pine D.S.
        • Ernst M.
        Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents: Development and psychopathology related differences.
        J Child Psychol Psychiatry. 2007; 48: 446-454
        • Tucker D.
        • Luu P.
        Neurophysiology of motivated learning: Adaptive mechanisms underlying cognitive bias in depression.
        Cognit Ther Res. 2007; 31: 189-209
        • Murrough J.W.
        • Iacoviello B.
        • Neumeister A.
        • Charney D.S.
        • Iosifescu D.V.
        Cognitive dysfunction in depression: Neurocircuitry and new therapeutic strategies [published online ahead of print June 16].
        Neurobiol Learn Mem. 2011; https://doi.org/10.1016/j.nlm.2011.06.006
        • Nolan C.L.
        • Moore G.J.
        • Madden R.
        • Farchione T.
        • Bartoi M.
        • Lorch E.
        • et al.
        Prefrontal cortical volume in childhood-onset major depression: Preliminary findings.
        Arch Gen Psychiatry. 2002; 59: 173-179
        • Matsuo K.
        • Rosenberg D.R.
        • Easter P.C.
        • MacMaster F.P.
        • Chen H.-H.
        • Nicoletti M.
        • et al.
        Striatal volume abnormalities in treatment-naïve patients diagnosed with pediatric major depressive disorder.
        J Child Adolesc Psychopharmacol. 2008; 18: 121-131
        • Rosso I.M.
        • Cintron C.M.
        • Steingard R.J.
        • Renshaw P.F.
        • Young A.D.
        • Yurgelun-Todd D.A.
        Amygdala and hippocampus volumes in pediatric major depression.
        Biol Psychiatry. 2005; 57: 21-26
        • MacMaster F.P.
        • Mirza Y.
        • Szeszko P.R.
        • Kmiecik L.E.
        • Easter P.C.
        • Taormina S.P.
        • et al.
        Amygdala and hippocampal volumes in familial early onset major depressive disorder.
        Biol Psychiatry. 2008; 63: 385-390
        • Caetano S.C.
        • Fonseca M.
        • Hatch J.P.
        • Olvera R.L.
        • Nicoletti M.
        • Hunter K.
        • et al.
        Medial temporal lobe abnormalities in pediatric unipolar depression.
        Neurosci Lett. 2007; 427: 142-147
        • MacMillan S.
        • Szeszko P.R.
        • Moore G.J.
        • Madden R.
        • Lorch E.
        • Ivey J.
        • et al.
        Increased amygdala: Hippocampal volume ratios associated with severity of anxiety in pediatric major depression.
        J Child Adolesc Psychopharmacol. 2003; 13: 65-73
        • MacMaster F.P.
        • Russell A.
        • Mirza Y.
        • Keshavan M.S.
        • Taormina S.P.
        • Bhandari R.
        • et al.
        Pituitary volume in treatment-naïve pediatric major depressive disorder.
        Biol Psychiatry. 2006; 60: 862-866
        • Forbes E.E.
        • May J.C.
        • Siegle G.J.
        • Ladouceur C.D.
        • Ryan N.D.
        • Carter C.S.
        • et al.
        Reward-related decision-making in pediatric major depressive disorder: An fMRI study.
        J Child Psychol Psychiatry. 2006; 47: 1031-1040
        • Forbes E.E.
        • Hariri A.R.
        • Martin S.L.
        • Silk J.S.
        • Moyles D.L.
        • Fisher P.M.
        • et al.
        Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder.
        Am J Psychiatry. 2009; 166: 64-73
        • Halari R.
        • Simic M.
        • Pariante C.M.
        • Papadopoulos A.
        • Cleare A.
        • Brammer M.
        • et al.
        Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naive adolescents with depression compared to controls.
        J Child Psychol Psychiatry. 2009; 50: 307-316
        • Pizzagalli D.A.
        • Holmes A.J.
        • Dillon D.G.
        • Goetz E.L.
        • Birk J.L.
        • Bogdan R.
        • et al.
        Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder.
        Am J Psychiatry. 2009; 166: 702-710
        • Sheline Y.I.
        • Barch D.M.
        • Donnelly J.M.
        • Ollinger J.M.
        • Snyder A.Z.
        • Mintun M.A.
        Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study.
        Biol Psychiatry. 2001; 50: 651-658
        • Fu C.H.
        • Williams S.C.
        • Cleare A.J.
        • Brammer M.J.
        • Walsh N.D.
        • Kim J.
        • et al.
        Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-related functional magnetic resonance imaging study.
        Arch Gen Psychiatry. 2004; 61: 877-889
        • Fales C.L.
        • Barch D.M.
        • Rundle M.M.
        • Mintun M.A.
        • Mathews J.
        • Snyder A.Z.
        • Sheline Y.I.
        Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression.
        J Affect Disord. 2009; 112: 206-211
        • Davidson R.J.
        • Irwin W.
        • Anderle M.J.
        • Kalin N.H.
        The neural substrates of affective processing in depressed patients treated with venlafaxine.
        Am J Psychiatry. 2003; 160: 64-75
        • DeRubeis R.J.
        • Siegle G.J.
        • Hollon S.D.
        Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms.
        Nat Rev Neurosci. 2008; 9: 788-796
        • Murphy S.E.
        Using functional neuroimaging to investigate the mechanisms of action of selective serotonin reuptake inhibitors (SSRIs).
        Curr Pharm Des. 2010; 16: 1990-1997
        • Thomas K.M.
        • Drevets W.C.
        • Dahl R.E.
        • Ryan N.D.
        • Birmaher B.
        • Eccard C.H.
        • et al.
        Amygdala response to fearful faces in anxious and depressed children.
        Arch Gen Psychiatry. 2001; 58: 1057-1063
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Small D.M.
        • Gitelman D.
        • Simmons K.
        • Bloise S.M.
        • Parrish T.
        • Mesulam M.M.
        Monetary incentives enhance processing in brain regions mediating top-down control of attention.
        Cereb Cortex. 2005; 15: 1855-1865
        • Engelmann J.B.
        • Pessoa L.
        Motivation sharpens exogenous spatial attention.
        Emotion. 2007; 7: 668-674
        • Pochon J.B.
        • Levy R.
        • Fossati P.
        • Lehericy S.
        • Poline J.B.
        • Pillon B.
        • et al.
        The neural system that bridges reward and cognition in humans: An fMRI study.
        Proc Natl Acad Sci U S A. 2002; 99: 5669-5674
        • Mohanty A.
        • Gitelman D.R.
        • Small D.M.
        • Mesulam M.M.
        The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts.
        Cereb Cortex. 2008; 18: 2604-2613
        • Krawczyk D.C.
        • Gazzaley A.
        • D'Esposito M.
        Reward modulation of prefrontal and visual association cortex during an incentive working memory task.
        Brain Res. 2007; 1141: 168-177
        • Rubia K.
        • Halari R.
        • Cubillo A.
        • Mohammad A.-M.
        • Brammer M.
        • Taylor E.
        Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task.
        Neuropharmacology. 2009; 57: 640-652
        • Rubia K.
        • Smith A.B.
        • Halari R.
        • Matsukura F.
        • Mohammad M.
        • Taylor E.
        • Brammer M.J.
        Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention.
        Am J Psychiatry. 2009; 166: 83-94
        • Rubia K.
        • Cubillo A.
        • Smith A.B.
        • Woolley J.
        • Heyman I.
        • Brammer M.J.
        Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder.
        Hum Brain Mapp. 2010; 31: 287-299
        • Smith A.B.
        • Halari R.
        • Giampetro V.
        • Brammer M.
        • Rubia K.
        Developmental effects of reward on sustained attention networks.
        Neuroimage. 2011; 56: 1693-1704
        • Muehlhan M.
        • Lueken U.
        • Wittchen H.-U.
        • Kirschbaum C.
        The scanner as a stressor: Evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session.
        Int J Psychophysiol. 2011; 79: 118-126
        • Luby J.L.
        • Heffelfinger A.
        • Mrakotsky C.
        • Brown K.
        • Hessler M.
        • Spitznagel E.
        Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and no-disorder comparison groups.
        Arch Gen Psychiatry. 2003; 60: 1248-1255
        • Kirschbaum C.
        • Hellhammer D.H.
        Salivary cortisol in psychoneuroendocrine research: Recent developments and applications.
        Psychoneuroendocrinology. 1994; 19: 313-333
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh Inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Kaufman J.
        • Birmaher B.
        • Brent D.A.
        • Ryan N.D.
        • Rao U.
        K-SADS-PL.
        J Am Acad Child Adolesc Psychiatry. 2000; 39: 1208
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory.
        2nd ed. The Psychological Corporation, San Antonio, TX1996
        • Achenbach T.M.
        Integrative Guide to the 1991 CBCL/4-18, YSR and TRF Profiles.
        University of Vermont, Department of Psychology, Burlington, VT1991
        • Rosenberg M.
        Society and the Adolescent Self-Image.
        Revised Edition. Princeton University Press, Princeton, NJ1989
        • Williamson D.E.
        • Birmaher B.
        • Dahl R.E.
        • Ryan N.D.
        Stressful life events in anxious and depressed children.
        J Child Adolesc Psychopharmacol. 2005; 15: 571-580
        • Raven J.C.
        Guide to the Standard Progressive Matrices.
        H.K. Lewis, London1960
        • Pariante C.M.
        • Papadopoulos A.S.
        • Poon L.
        • Checkley S.A.
        • English J.
        • Kerwin R.W.
        • Lightman S.
        A novel prednisolone suppression test for the hypothalamic-pituitary-adrenal axis.
        Biol Psychiatry. 2002; 51: 922-930
        • Conners C.
        The Conners Continuous Performance Test.
        Multi-Health Systems, North Tonawanda, NY1993
        • Schmitz N.
        • Rubia K.
        • van Amelsvoort T.
        • Daly E.
        • Smith A.
        • Murphy D.G.M.
        Neural correlates of reward in autism.
        Br J Psychiatry. 2008; 192: 19-24
        • Halperin J.M.
        • Wolf L.
        • Greenblatt E.R.
        • Young G.
        Subtype analysis of commission errors on the continuous performance-test in children.
        Dev Neuropsychol. 1991; 7: 207-217
        • Halperin J.M.
        • Wolf L.E.
        • Pascualvaca D.M.
        • Newcorn J.H.
        • Healey J.M.
        • Obrien J.D.
        • et al.
        Differential assessment of attention and impulsivity in children.
        J Am Acad Child Adolesc Psychiatry. 1988; 27: 326-329
        • Klee S.H.
        • Garfinkel B.D.
        The computerized continuous performance task: A new measure of inattention.
        J Abnorm Child Psychol. 1983; 11: 487-495
        • Epstein J.N.
        • Erkanli A.
        • Conners C.K.
        • Klaric J.
        • Costello J.E.
        • Angold A.
        Relations between Continuous Performance Test performance measures and ADHD behaviors.
        J Abnorm Child Psychol. 2003; 31: 543-554
        • Brammer M.J.
        • Bullmore E.T.
        • Simmons A.
        • Williams S.C.
        • Grasby P.M.
        • Howard R.J.
        • et al.
        Generic brain activation mapping in functional magnetic resonance imaging: A nonparametric approach.
        Magn Reson Imaging. 1997; 15: 763-770
        • Thirion B.
        • Pinel P.
        • Meriaux S.
        • Roche A.
        • Dehaene S.
        • Poline J.B.
        Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses.
        Neuroimage. 2007; 35: 105-120
        • Bullmore E.T.
        • Brammer M.J.
        • Rabe-Hesketh S.
        • Curtis V.A.
        • Morris R.G.
        • Williams S.C.
        • et al.
        Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI.
        Hum Brain Mapp. 1999; 7: 38-48
        • Bullmore E.T.
        • Suckling J.
        • Overmeyer S.
        • Rabe-Hesketh S.
        • Taylor E.
        • Brammer M.J.
        Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain.
        IEEE Trans Med Imaging. 1999; 18: 32-42
        • Lockwood K.A.
        • Alexopoulos G.S.
        • van Gorp W.G.
        Executive dysfunction in geriatric depression.
        Am J Psychiatry. 2002; 159: 1119-1126
        • Hahn B.
        • Ross T.J.
        • Stein E.A.
        Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention.
        Neuroimage. 2006; 32: 842-853
        • Mao L.
        • Zhou B.
        • Zhou W.
        • Han S.
        Neural correlates of covert orienting of visual spatial attention along vertical and horizontal dimensions.
        Brain Res. 2007; 1136: 142-153
        • Materna S.
        • Dicke P.W.
        • Thier P.
        Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: A functional magnetic resonance imaging study.
        J Cogn Neurosci. 2008; 20: 108-119
        • Le T.H.
        • Pardo J.V.
        • Hu X.P.
        4 T-fMRI study of nonspatial shifting of selective attention: Cerebellar and parietal contributions.
        J Neurophysiol. 1998; 79: 1535-1548
        • Lawrence N.S.
        • Ross T.J.
        • Hoffmann R.
        • Garavan H.
        • Stein E.A.
        Multiple neuronal networks mediate sustained attention.
        J Cogn Neurosci. 2003; 15: 1028-1038
        • Tana M.G.
        • Montin E.
        • Cerutti S.
        • Bianchi A.M.
        Exploring cortical attentional system by using fMRI during a Continuous Performance Test.
        Comput Intell Neurosci. 2010; 2010: 329213
        • Voisin J.
        • Bidet-Caulet A.
        • Bertrand O.
        • Fonlupt P.
        Listening in silence activates auditory areas: A functional magnetic resonance imaging study.
        J Neurosci. 2006; 26: 273-278
        • Yang T.T.
        • Simmons A.N.
        • Matthews S.C.
        • Tapert S.F.
        • Frank G.K.
        • Bischoff-Grethe A.
        • et al.
        Depressed adolescents demonstrate greater subgenual anterior cingulate activity.
        Neuroreport. 2009; 20: 440-444
        • Smoski M.J.
        • Felder J.
        • Bizzell J.
        • Green S.R.
        • Ernst M.
        • Lynch T.R.
        • Dichter G.S.
        fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder.
        J Affect Disord. 2009; 118: 69-78
        • Fitzgerald P.B.
        • Laird A.R.
        • Maller J.
        • Daskalakis Z.J.
        A meta-analytic study of changes in brain activation in depression.
        Hum Brain Mapp. 2008; 29: 683-695
        • Fitzgerald P.B.
        • Oxley T.J.
        • Laird A.R.
        • Kulkarni J.
        • Egan G.F.
        • Daskalakis Z.J.
        An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression.
        Psychiatry Res. 2006; 148: 33-45
        • Christakou A.
        • Halari R.
        • Smith A.B.
        • Ifkovits E.
        • Brammer M.
        • Rubia K.
        Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.
        Neuroimage. 2009; 48: 223-236
        • Rubia K.
        • Hyde Z.
        • Halari R.
        • Giampietro V.
        • Smith A.
        Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
        Neuroimage. 2010; 51: 817-827
        • Christakou A.
        • Brammer M.
        • Rubia K.
        Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting.
        Neuroimage. 2011; 54: 1344-1354
        • Rademacher L.
        • Krach S.
        • Kohls G.
        • Irmak A.
        • Gründer G.
        • Spreckelmeyer K.N.
        Dissociation of neural networks for anticipation and consumption of monetary and social rewards.
        Neuroimage. 2010; 49: 3276-3285
        • Galvan A.
        • Hare T.A.
        • Davidson M.
        • Spicer J.
        • Glover G.
        • Casey B.J.
        The role of ventral frontostriatal circuitry in reward-based learning in humans.
        J Neurosci. 2005; 25: 8650-8656
        • Haber S.N.
        • Calzavara R.
        The cortico-basal ganglia integrative network: The role of the thalamus.
        Brain Res Bull. 2009; 78: 69-74
        • Elliott R.
        • Friston K.J.
        • Dolan R.J.
        Dissociable neural responses in human reward systems.
        J Neurosci. 2000; 20: 6159-6165
        • Grahn J.A.
        • Parkinson J.A.
        • Owen A.M.
        The cognitive functions of the caudate nucleus.
        Prog Neurobiol. 2008; 86: 141-155
        • Delgado M.R.
        • Stenger V.A.
        • Fiez J.A.
        Motivation-dependent responses in the human caudate nucleus.
        Cereb Cortex. 2004; 14: 1022-1030
        • Chambers R.A.
        • Taylor J.R.
        • Potenza M.N.
        Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability.
        Am J Psychiatry. 2003; 160: 1041-1052
        • Wittmann B.C.
        • Bunzeck N.
        • Dolan R.J.
        • Düzel E.
        Anticipation of novelty recruits reward system and hippocampus while promoting recollection.
        Neuroimage. 2007; 38: 194-202
        • Schott B.H.
        • Minuzzi L.
        • Krebs R.M.
        • Elmenhorst D.
        • Lang M.
        • Winz O.H.
        • et al.
        Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release.
        J Neurosci. 2008; 28: 14311-14319
        • Shigemune Y.
        • Abe N.
        • Suzuki M.
        • Ueno A.
        • Mori E.
        • Tashiro M.
        • et al.
        Effects of emotion and reward motivation on neural correlates of episodic memory encoding: A PET study.
        Neurosci Res. 2010; 67: 72-79
        • Mayberg H.
        Limbic-cortical dysregulation: A proposed model of depression.
        J Neuropsychiatry Clin Neurosci. 1997; 9: 471-481
        • Nestler E.J.
        • Barrot M.
        • DiLeone R.J.
        • Eisch A.J.
        • Gold S.J.
        • Monteggia L.M.
        Neurobiology of depression.
        Neuron. 2002; 34: 13-25
        • Wu Z.H.
        • Guo A.K.
        Selective visual attention in a neurocomputational model of phase oscillators.
        Biological Cybernetics. 1999; 80: 205-214
        • Bush G.
        • Vogt B.A.
        • Holmes J.
        • Dale A.M.
        • Greve D.
        • Jenike M.A.
        • Rosen B.R.
        Dorsal anterior cingulate cortex: A role in reward-based decision making.
        Proc Natl Acad Sci U S A. 2002; 99: 523-528
        • Bush G.
        • Luu P.
        • Posner M.I.
        Cognitive and emotional influences in anterior cingulate cortex.
        Trends Cogn Sci. 2000; 4: 215-222
        • Ridderinkhof K.R.
        • van den Wildenberg W.P.M.
        • Segalowitz S.J.
        • Carter C.S.
        Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning.
        Brain Cogn. 2004; 56: 129-140
        • Davey C.G.
        • Yücel M.
        • Allen N.B.
        The emergence of depression in adolescence: Development of the prefrontal cortex and the representation of reward.
        Neurosci Biobehav Rev. 2008; 32: 1-19
        • Forbes E.E.
        • Dahl R.E.
        Neural systems of positive affect: Relevance to understanding child and adolescent depression?.
        Dev Psychopathol. 2005; 17: 827-850
        • Cubillo A.
        • Halari R.
        • Smith A.
        • Taylor E.
        • Rubia K.
        A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention [published online ahead of print April 27].
        Cortex. 2011;
        • Rubia K.
        • Lee F.
        • Cleare A.J.
        • Tunstall N.
        • Fu C.H.Y.
        • Brammer M.
        • McGuire P.
        Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI.
        Psychopharmacology (Berl). 2005; 179: 791-803
        • Lamar M.
        • Cutter W.J.
        • Rubia K.
        • Brammer M.
        • Daly E.M.
        • Craig M.C.
        • et al.
        5-HT, prefrontal function and aging: fMRI of inhibition and acute tryptophan depletion.
        Neurobiol Aging. 2009; 30: 1135-1146
      1. Arnsten A, Rubia K (in press): Neurobiological circuits regulating attention, movement and emotion and their disruptions in pediatric neuropsychiatric disorders. J Am Acad Child Adolesc Psychiatry.

        • Steinlin M.
        The cerebellum in cognitive processes: Supporting studies in children.
        Cerebellum. 2007; 6: 237-241
        • Allen G.
        • McColl R.
        • Barnard H.
        • Ringe W.K.
        • Fleckenstein J.
        • Cullum C.M.
        Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity.
        Neuroimage. 2005; 28: 39-48
        • Bonnet M.C.
        • Dilharreguy B.
        • Allard M.
        • Deloire M.S.A.
        • Petry K.G.
        • Brochet B.
        Differential cerebellar and cortical involvement according to various attentional load: Role of educational level.
        Hum Brain Mapp. 2009; 30: 1133-1143
        • Rubia K.
        “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: A review.
        Biol Psychiatry. 2011; 69: e69-e87
        • Rubia K.
        • Smith A.
        • Taylor E.
        Performance of children with attention deficit hyperactivity disorder (ADHD) on a test battery of impulsiveness.
        Child Neuropsychol. 2007; 13: 276-304
        • Peters S.
        • Cleare A.J.
        • Papadopoulos A.
        • Fu C.H.Y.
        Cortisol responses to serial MRI scans in healthy adults and in depression.
        Psychoneuroendocrinology. 2011; 36: 737-741
        • Wechsler D.
        The Wechsler Intelligence Scale for Children.
        4th ed. Pearson Assessment, London2004