Advertisement

Reduced Sleep Spindles and Spindle Coherence in Schizophrenia: Mechanisms of Impaired Memory Consolidation?

      Background

      Sleep spindles are thought to induce synaptic changes and thereby contribute to memory consolidation during sleep. Patients with schizophrenia show dramatic reductions of both spindles and sleep-dependent memory consolidation, which may be causally related.

      Methods

      To examine the relations of sleep spindle activity to sleep-dependent consolidation of motor procedural memory, 21 chronic, medicated schizophrenia outpatients and 17 healthy volunteers underwent polysomnography on two consecutive nights. On the second night, participants were trained on the finger-tapping motor sequence task (MST) at bedtime and tested the following morning. The number, density, frequency, duration, amplitude, spectral content, and coherence of stage 2 sleep spindles were compared between groups and examined in relation to overnight changes in MST performance.

      Results

      Patients failed to show overnight improvement on the MST and differed significantly from control participants who did improve. Patients also exhibited marked reductions in the density (reduced 38% relative to control participants), number (reduced 36%), and coherence (reduced 19%) of sleep spindles but showed no abnormalities in the morphology of individual spindles or of sleep architecture. In patients, reduced spindle number and density predicted less overnight improvement on the MST. In addition, reduced amplitude and sigma power of individual spindles correlated with greater severity of positive symptoms.

      Conclusions

      The observed sleep spindle abnormalities implicate thalamocortical network dysfunction in schizophrenia. In addition, the findings suggest that abnormal spindle generation impairs sleep-dependent memory consolidation in schizophrenia, contributes to positive symptoms, and is a promising novel target for the treatment of cognitive deficits in schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kraepelin E.
        Dementia Praecox and Paraphrenia.
        E.S. Livingston, Edinburgh1919
        • Lieberman J.A.
        • Stroup T.S.
        • McEvoy J.P.
        • Swartz M.S.
        • Rosenheck R.A.
        • Perkins D.O.
        • et al.
        Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.
        N Engl J Med. 2005; 353: 1209-1223
        • Miller T.J.
        • Zipursky R.B.
        • Perkins D.
        • Addington J.
        • Woods S.W.
        • Hawkins K.A.
        • et al.
        The PRIME North America randomized double-blind clinical trial of olanzapine versus placebo in patients at risk of being prodromally symptomatic for psychosis.
        Schizophr Res. 2003; 61: 19-30
        • Manoach D.S.
        • Stickgold R.
        Does abnormal sleep impair memory consolidation in schizophrenia?.
        Front Hum Neurosci. 2009; 3: 21
        • Manoach D.S.
        • Thakkar K.N.
        • Stroynowski E.
        • Ely A.
        • McKinley S.
        • Wamsley E.
        • et al.
        Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages.
        J Psychiatr Res. 2010; 44: 112-120
        • Ferrarelli F.
        • Huber R.
        • Peterson M.J.
        • Massimini M.
        • Murphy M.
        • Riedner B.A.
        • et al.
        Reduced sleep spindle activity in schizophrenia patients.
        Am J Psychiatry. 2007; 164: 483-492
        • Ferrarelli F.
        • Peterson M.J.
        • Sarasso S.
        • Riedner B.A.
        • Murphy M.J.
        • Benca R.M.
        • et al.
        Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles.
        Am J Psychiatry. 2010; 167: 1339-1348
        • Seeck-Hirschner M.
        • Baier P.C.
        • Sever S.
        • Buschbacher A.
        • Aldenhoff J.B.
        • Goder R.
        Effects of daytime naps on procedural and declarative memory in patients with schizophrenia.
        J Psychiatr Res. 2011; 44: 42-47
        • Werk C.M.
        • Harbour V.L.
        • Chapman C.A.
        Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo.
        Neuroscience. 2005; 131: 793-800
        • Sirota A.
        • Csicsvari J.
        • Buhl D.
        • Buzsaki G.
        Communication between neocortex and hippocampus during sleep in rodents.
        Proc Natl Acad Sci U S A. 2003; 100: 2065-2069
        • Siapas A.G.
        • Wilson M.A.
        Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep.
        Neuron. 1998; 21: 1123-1128
        • Rosanova M.
        • Ulrich D.
        Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train.
        J Neurosci. 2005; 25: 9398-9405
        • Fogel S.M.
        • Smith C.T.
        The function of the sleep spindle: A physiological index of intelligence and a mechanism for sleep-dependent memory consolidation.
        Neurosci Biobehav Rev. 2011; 35: 1154-1165
        • Green M.F.
        • Nuechterlein K.H.
        • Gold J.M.
        • Barch D.M.
        • Cohen J.
        • Essock S.
        • et al.
        Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria.
        Biol Psychiatry. 2004; 56: 301-307
        • Holt D.J.
        • Lebron-Milad K.
        • Milad M.R.
        • Rauch S.L.
        • Pitman R.K.
        • Orr S.P.
        • et al.
        Extinction memory is impaired in schizophrenia.
        Biol Psychiatry. 2009; 65: 455-463
        • Herbener E.S.
        Impairment in long-term retention of preference conditioning in schizophrenia.
        Biol Psychiatry. 2009; 65: 1086-1090
        • Manoach D.S.
        • Cain M.S.
        • Vangel M.G.
        • Khurana A.
        • Goff D.C.
        • Stickgold R.
        A failure of sleep-dependent procedural learning in chronic, medicated schizophrenia.
        Biol Psychiatry. 2004; 56: 951-956
        • Jus K.
        • Kiljan A.
        • Wilczak H.
        • Kubacki A.
        • Rzepecki J.
        • Jus A.
        Polygraphic study of night sleep in schizophrenia before and during treatment with phenothiazine derivatives.
        Ann Med Psychol (Paris). 1968; 126: 713-725
        • Feinberg I.
        • Braun M.
        • Koresko R.L.
        • Gottlieb F.
        Stage 4 sleep in schizophrenia.
        Arch Gen Psychiatry. 1969; 21: 262-266
        • Poulin J.
        • Daoust A.M.
        • Forest G.
        • Stip E.
        • Godbout R.
        Sleep architecture and its clinical correlates in first episode and neuroleptic-naive patients with schizophrenia.
        Schizophr Res. 2003; 62: 147-153
        • Tandon R.
        • Shipley J.E.
        • Taylor S.
        • Greden J.F.
        • Eiser A.
        • DeQuardo J.
        • Goodson J.
        Electroencephalographic sleep abnormalities in schizophrenia.
        Arch Gen Psychiatry. 1992; 49: 185-194
        • Yang C.
        • Winkelman J.W.
        Clinical significance of sleep EEG abnormalities in chronic schizophrenia.
        Schizophr Res. 2006; 82: 251-260
        • Benca R.M.
        • Obermeyer W.H.
        • Thisted R.A.
        • Gillin J.C.
        Sleep and psychiatric disorders.
        Arch Gen Psychiatry. 1992; 49 (discussion 669–670): 651-668
        • Chouinard S.
        • Poulin J.
        • Stip E.
        • Godbout R.
        Sleep in untreated patients with schizophrenia: A meta-analysis.
        Schizophr Bull. 2004; 30: 957-967
        • Van Cauter E.
        • Linkowski P.
        • Kerkhofs M.
        • Hubain P.
        • L'Hermite-Baleriaux M.
        • Leclercq R.
        • et al.
        Circadian and sleep-related endocrine rhythms in schizophrenia.
        Arch Gen Psychiatry. 1991; 48: 348-356
        • Hiatt J.F.
        • Floyd T.C.
        • Katz P.H.
        • Feinberg I.
        Further evidence of abnormal non-rapid-eye-movement sleep in schizophrenia.
        Arch Gen Psychiatry. 1985; 42: 797-802
        • Karni A.
        • Meyer G.
        • Rey-Hipolito C.
        • Jezzard P.
        • Adams M.M.
        • Turner R.
        • Ungerleider L.G.
        The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex.
        Proc Natl Acad Sci U S A. 1998; 95: 861-868
        • Walker M.P.
        • Brakefield T.
        • Morgan A.
        • Hobson J.A.
        • Stickgold R.
        Practice with sleep makes perfect: Sleep-dependent motor skill learning.
        Neuron. 2002; 35: 205-211
        • Nishida M.
        • Walker M.P.
        Daytime naps, motor memory consolidation and regionally specific sleep spindles.
        PLoS One. 2007; 2: e341
        • Tamaki M.
        • Matsuoka T.
        • Nittono H.
        • Hori T.
        Fast sleep spindle (13-15 hz) activity correlates with sleep-dependent improvement in visuomotor performance.
        Sleep. 2008; 31: 204-211
        • Tamaki M.
        • Matsuoka T.
        • Nittono H.
        • Hori T.
        Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: A study using sLORETA.
        Clin Neurophysiol. 2009; 120: 878-886
        • Barakat M.
        • Doyon J.
        • Debas K.
        • Vandewalle G.
        • Morin A.
        • Poirier G.
        • et al.
        Fast and slow spindle involvement in the consolidation of a new motor sequence.
        Behav Brain Res. 2011; 217: 117-121
        • Medkour T.
        • Walden A.T.
        • Burgess A.P.
        • Strelets V.B.
        Brain connectivity in positive and negative syndrome schizophrenia.
        Neuroscience. 2010; 169: 1779-1788
        • Wada Y.
        • Nanbu Y.
        • Kikuchi M.
        • Koshino Y.
        • Hashimoto T.
        Aberrant functional organization in schizophrenia: Analysis of EEG coherence during rest and photic stimulation in drug-naive patients.
        Neuropsychobiology. 1998; 38: 63-69
        • Winterer G.
        • Egan M.F.
        • Radler T.
        • Hyde T.
        • Coppola R.
        • Weinberger D.R.
        An association between reduced interhemispheric EEG coherence in the temporal lobe and genetic risk for schizophrenia.
        Schizophr Res. 2001; 49: 129-143
        • Yeragani V.K.
        • Cashmere D.
        • Miewald J.
        • Tancer M.
        • Keshavan M.S.
        Decreased coherence in higher frequency ranges (beta and gamma) between central and frontal EEG in patients with schizophrenia: A preliminary report.
        Psychiatry Res. 2006; 141: 53-60
        • Bunney W.E.
        • Bunney B.G.
        Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia.
        Brain Res Brain Res Rev. 2000; 31: 138-146
        • Andreasen N.C.
        • Paradiso S.
        • O'Leary D.S.
        “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry?.
        Schizophr Bull. 1998; 24: 203-218
        • Oh J.S.
        • Kubicki M.
        • Rosenberger G.
        • Bouix S.
        • Levitt J.J.
        • McCarley R.W.
        • et al.
        Thalamo-frontal white matter alterations in chronic schizophrenia: A quantitative diffusion tractography study.
        Hum Brain Mapp. 2009; 30: 3812-3825
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version, Patient Edition with Psychotic Screen (SCID-I/P W/PSY SCREEN).
        Biometrics Research, New York State Psychiatric Institute, New York1997
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Rechtschaffen A.
        • Kales A.
        A Manual Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects.
        Health UDo, Bethesda, MD1968 (editor)
        • De Gennaro L.
        • Ferrara M.
        Sleep spindles: An overview.
        Sleep Med Rev. 2003; 7: 423-440
        • Schabus M.
        • Dang-Vu T.T.
        • Albouy G.
        • Balteau E.
        • Boly M.
        • Carrier J.
        • et al.
        Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
        Proc Natl Acad Sci U S A. 2007; 104: 13164-13169
        • Akay M.
        Time Frequency and Wavelets in Biomedical Signal Processing.
        Wiley-IEEE Press, Piscataway, NJ1997
        • Nunez P.
        Electric Fields of the Brain: The Neurophysics of EEG.
        Oxford University Press, New York2005
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Clemens Z.
        • Fabo D.
        • Halasz P.
        Overnight verbal memory retention correlates with the number of sleep spindles.
        Neuroscience. 2005; 132: 529-535
        • Clemens Z.
        • Fabo D.
        • Halasz P.
        Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles.
        Neurosci Lett. 2006; 403: 52-56
        • Schabus M.
        • Gruber G.
        • Parapatics S.
        • Sauter C.
        • Klosch G.
        • Anderer P.
        • et al.
        Sleep spindles and their significance for declarative memory consolidation.
        Sleep. 2004; 27: 1479-1485
        • Tamminen J.
        • Payne J.D.
        • Stickgold R.
        • Wamsley E.J.
        • Gaskell M.G.
        Sleep spindle activity is associated with the integration of new memories and existing knowledge.
        J Neurosci. 2010; 30: 14356-14360
        • Fogel S.M.
        • Nader R.
        • Cote K.A.
        • Smith C.T.
        Sleep spindles and learning potential.
        Behav Neurosci. 2007; 121: 1-10
        • Schabus M.
        • Hodlmoser K.
        • Gruber G.
        • Sauter C.
        • Anderer P.
        • Klosch G.
        • et al.
        Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities.
        Eur J Neurosci. 2006; 23: 1738-1746
        • Shibagaki M.
        • Kiyono S.
        • Watanabe K.
        Spindle evolution in normal and mentally retarded children: A review.
        Sleep. 1982; 5: 47-57
        • De Giorgis G.F.
        • Nonnis E.
        • Crocioni F.
        • Gregori P.
        • Rosini M.P.
        • Leuzzi V.
        • Loizzo A.
        Evolution of daytime quiet sleep components in early treated phenylketonuric infants.
        Brain Dev. 1996; 18: 201-206
        • Limoges E.
        • Mottron L.
        • Bolduc C.
        • Berthiaume C.
        • Godbout R.
        Atypical sleep architecture and the autism phenotype.
        Brain. 2005; 128: 1049-1061
        • Guillery R.W.
        • Harting J.K.
        Structure and connections of the thalamic reticular nucleus: Advancing views over half a century.
        J Comp Neurol. 2003; 463: 360-371
        • Houser C.R.
        • Vaughn J.E.
        • Barber R.P.
        • Roberts E.
        GABA neurons are the major cell type of the nucleus reticularis thalami.
        Brain Res. 1980; 200: 341-354
        • Jacobsen R.B.
        • Ulrich D.
        • Huguenard J.R.
        GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro.
        J Neurophysiol. 2001; 86: 1365-1375
        • Contreras D.
        • Steriade M.
        Spindle oscillation in cats: The role of corticothalamic feedback in a thalamically generated rhythm.
        J Physiol. 1996; 490: 159-179
        • Llinas R.R.
        • Steriade M.
        Bursting of thalamic neurons and states of vigilance.
        J Neurophysiol. 2006; 95: 3297-3308
        • Beenhakker M.P.
        • Huguenard J.R.
        Neurons that fire together also conspire together: Is normal sleep circuitry hijacked to generate epilepsy?.
        Neuron. 2009; 62: 612-632
        • Fuentealba P.
        • Steriade M.
        The reticular nucleus revisited: Intrinsic and network properties of a thalamic pacemaker.
        Prog Neurobiol. 2005; 75: 125-141
        • Steriade M.
        • Domich L.
        • Oakson G.
        • Deschenes M.
        The deafferented reticular thalamic nucleus generates spindle rhythmicity.
        J Neurophysiol. 1987; 57: 260-273
        • Contreras D.
        • Destexhe A.
        • Sejnowski T.J.
        • Steriade M.
        Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback.
        Science. 1996; 274: 771-774
        • O'Neill J.
        • Pleydell-Bouverie B.
        • Dupret D.
        • Csicsvari J.
        Play it again: Reactivation of waking experience and memory.
        Trends Neurosci. 2010; 33: 220-229
        • Buzsaki G.
        Memory consolidation during sleep: A neurophysiological perspective.
        J Sleep Res. 1998; 7: 17-23
        • Thompson M.
        • Weickert C.S.
        • Wyatt E.
        • Webster M.J.
        Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders.
        J Psychiatr Res. 2009; 43: 970-977
        • Smith R.E.
        • Haroutunian V.
        • Davis K.L.
        • Meador-Woodruff J.H.
        Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia.
        Am J Psychiatry. 2001; 158: 1393-1399
        • Ibrahim H.M.
        • Hogg Jr, A.J.
        • Healy D.J.
        • Haroutunian V.
        • Davis K.L.
        • Meador-Woodruff J.H.
        Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia.
        Am J Psychiatry. 2000; 157: 1811-1823
        • Borbely A.A.
        • Mattmann P.
        • Loepfe M.
        • Strauch I.
        • Lehmann D.
        Effect of benzodiazepine hypnotics on all-night sleep EEG spectra.
        Hum Neurobiol. 1985; 4: 189-194
        • Kubicki S.
        • Herrmann W.M.
        • Holler L.
        • Haag C.
        On the distribution of REM and NREM sleep under two benzodiazepines with comparable receptor affinity but different kinetic properties.
        Pharmacopsychiatry. 1987; 20: 270-277
        • Goder R.
        • Fritzer G.
        • Gottwald B.
        • Lippmann B.
        • Seeck-Hirschner M.
        • Serafin I.
        • Aldenhoff J.B.
        Effects of olanzapine on slow wave sleep, sleep spindles and sleep-related memory consolidation in schizophrenia.
        Pharmacopsychiatry. 2008; 41: 92-99
        • Morin A.
        • Doyon J.
        • Dostie V.
        • Barakat M.
        • Hadj Tahar A.
        • Korman M.
        • et al.
        Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep.
        Sleep. 2008; 31: 1149-1156
        • Finelli L.A.
        • Achermann P.
        • Borbely A.A.
        Individual ‘fingerprints’ in human sleep EEG topography.
        Neuropsychopharmacology. 2001; 25: S57-S62
        • De Gennaro L.
        • Marzano C.
        • Fratello F.
        • Moroni F.
        • Pellicciari M.C.
        • Ferlazzo F.
        • et al.
        The electroencephalographic fingerprint of sleep is genetically determined: A twin study.
        Ann Neurol. 2008; 64: 455-460
        • Tucker M.
        • McKinley S.
        • Stickgold R.
        Sleep optimizes motor skill in older adults.
        J Am Geriatr Soc. 2011; 59: 603-609