Advertisement
Archival Report| Volume 70, ISSUE 10, P937-945, November 15, 2011

Download started.

Ok

Serotonergic and Noradrenergic Pathways Are Required for the Anxiolytic-like and Antidepressant-like Behavioral Effects of Repeated Vagal Nerve Stimulation in Rats

  • Havan Furmaga
    Affiliations
    Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas
    Search for articles by this author
  • Aparna Shah
    Affiliations
    Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas
    Search for articles by this author
  • Alan Frazer
    Correspondence
    Address correspondence to Alan Frazer, Ph.D., Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229-3900
    Affiliations
    Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas

    Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
    Search for articles by this author
Published:September 12, 2011DOI:https://doi.org/10.1016/j.biopsych.2011.07.020

      Background

      Vagal nerve stimulation (VNS) is used for treatment-refractory depression, but there are few preclinical studies of its effects when administered repeatedly over time using clinically relevant stimulation parameters in nonanesthetized animals.

      Methods

      The novelty-suppressed feeding test (NSFT) and forced swim test (FST) were used to evaluate the anxiolytic- and antidepressant-like potential of VNS in rats, respectively. The behavioral effects of VNS were compared with those of desipramine (DMI; 10 mg/kg/day) and sertraline (7.5 mg/kg/day) administered via osmotic minipump. Such experiments were carried out in intact rats as well as those that had selective destruction of either serotonin or noradrenergic neurons in brain caused by the neurotoxins, 5,7-dihyroxytryptamine (5,7-DHT), or 6-hydroxydopamine (6-OHDA).

      Results

      Repeated administration of VNS, DMI, and sertraline decreased latency to feed in the NSFT. In the FST, repeated VNS, DMI, and sertraline caused decreased immobility; the VNS-induced decrease in immobility resulted from increases in both swimming and climbing behaviors. Effects of VNS and sertraline, but not DMI, in both the NSFT and the FST were abolished in rats treated with 5,7-DHT. Effects of DMI in both behavioral tests, but not those of sertraline, were abolished in 6-OHDA treated rats. VNS effects on immobility and climbing in the FST were not blocked in the 6-OHDA-treated rats. There was no significant difference in locomotor activity caused by any of the treatments or by the lesions.

      Conclusions

      Serotonergic nerves are required for repeated VNS-induced anxiolytic- and antidepressant-like effects. Noradrenergic nerves can also be activated by VNS to cause its anxiolytic-like effect.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schlaepfer T.E.
        • Frick C.
        • Zobel A.
        • Maier W.
        • Heuser I.
        • Bajbouj M.
        • et al.
        Vagus nerve stimulation for depression: Efficacy and safety in a European study.
        Psychol Med. 2008; 38: 651-661
        • Rush A.J.
        • Sackeim H.A.
        • Marangell L.B.
        • George M.S.
        • Brannan S.K.
        • Davis S.M.
        • et al.
        Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: A naturalistic study.
        Biol Psychiatry. 2005; 58: 355-363
        • George M.S.
        • Rush A.J.
        • Marangell L.B.
        • Sackeim H.A.
        • Brannan S.K.
        • Davis S.M.
        • et al.
        A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression.
        Biol Psychiatry. 2005; 58: 364-373
        • Nahas Z.
        • Marangell L.B.
        • Husain M.M.
        • Rush A.J.
        • Sackeim H.A.
        • Lisanby S.H.
        • et al.
        Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes.
        J Clin Psychiatry. 2005; 66: 1097-1104
        • Dunner D.L.
        • Rush A.J.
        • Russell J.M.
        • Burke M.
        • Woodard S.
        • Wingard P.
        • et al.
        Prospective, long-term, multicenter study of the naturalistic outcomes of patients with treatment-resistant depression.
        J Clin Psychiatry. 2006; 67: 688-695
        • Rush A.J.
        • Marangell L.B.
        • Sackeim H.A.
        • George M.S.
        • Brannan S.K.
        • Davis S.M.
        • et al.
        Vagus nerve stimulation for treatment-resistant depression: A randomized, controlled acute phase trial.
        Biol Psychiatry. 2005; 58: 347-354
        • Naritoku D.K.
        • Terry W.J.
        • Helfert R.H.
        Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve.
        Epilepsy Res. 1995; 22: 53-62
        • Rutherfurd S.D.
        • Widdop R.E.
        • Sannajust F.
        • Louis W.J.
        • Gundlach A.L.
        Expression of c-fos and NGFI-A messenger RNA in the medulla oblongata of the anaesthetized rat following stimulation of vagal and cardiovascular afferents.
        Brain Res. 1992; 13: 301-312
        • Osharina V.
        • Bagaev V.
        • Wallois F.
        • Larnicol N.
        Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: Importance of pulse frequency.
        Auton Neurosci. 2006; 126–127: 72-80
        • Yousfi-Malki M.
        • Puizillout J.J.
        Induction of Fos-like protein in neurons of the medulla oblongata after electrical stimulation of the vagus nerve in anesthetized rabbit.
        Brain Res. 1994; 635: 317-322
        • Woodbury D.M.
        • Woodbury J.W.
        Effects of vagal stimulation on experimentally induced seizures in rats.
        Epilepsia. 1990; 31: 7-19
        • Dorr A.E.
        • Debonnel G.
        Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission.
        J Pharmacol Exp Ther. 2006; 318: 890-898
        • Raedt R.
        • Clinckers R.
        • Mollet L.
        • Vonck K.
        • El Tahry R.
        • Wyckhuys T.
        • et al.
        Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model.
        J Neurochem. 2011; 117: 461-469
        • Roosevelt R.W.
        • Smith D.C.
        • Clough R.W.
        • Jensen R.A.
        • Browning R.A.
        Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat.
        Brain Res. 2006; 1119: 124-132
        • Follesa P.
        • Biggio F.
        • Gorini G.
        • Caria S.
        • Talani G.
        • Dazzi L.
        • et al.
        Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bGGF in the rat brain.
        Brain Res. 2007; 1179: 28-34
        • Hassert D.L.
        • Miyashita T.
        • Williams C.L.
        The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala.
        Behav Neurosci. 2004; 118: 79-88
        • Bodnoff S.R.
        • Suranyi-Cadotte B.
        • Aitken D.H.
        • Quirion R.
        • Meaney M.J.
        The effects of chronic antidepressant treatment in an animal model of anxiety.
        Psychopharmacology. 1988; 95: 298-302
        • Bodnoff S.R.
        • Suranyi-Cadotte B.
        • Quirion R.
        • Meaney M.J.
        A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety.
        Psychopharmacology. 1989; 97: 277-279
        • Rex A.
        • Voigt J.P.
        • Voits M.
        • Fink H.
        Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs.
        Pharmacol Biochem Behav. 1998; 59: 677-683
        • Santarelli L.
        • Saxe M.
        • Gross C.
        • Surget A.
        • Battaglia F.
        • Dulawa S.
        • et al.
        Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.
        Science. 2003; 301: 805-809
        • Cryan J.F.
        • Lucki I.
        5-HT4 receptors do not mediate the antidepressant-like behavioral effects of fluoxetine in a modified forced swim test.
        Eur J Pharmacol. 2000; 409: 295-299
        • Porsolt R.D.
        • Le Pichon M.
        • Jalfre M.
        Depression: A new animal model sensitive to antidepressant treatments.
        Nature. 1977; 266: 730-732
        • Detke M.J.
        • Rickels M.
        • Lucki I.
        Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants.
        Psychopharmacology. 1995; 121: 66-72
        • Cunningham J.T.
        • Mifflin S.W.
        • Gould G.G.
        • Frazer A.
        Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by vagal nerve stimulation.
        Neuropsychopharmacology. 2007; 33: 1884-1895
        • Benmansour S.
        • Cecchi M.
        • Morilak D.A.
        • Gerhardt G.A.
        • Javors M.A.
        • Gould G.G.
        • et al.
        Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level.
        J Neurosci. 1999; 19: 10494-10501
        • Cryan J.F.
        • Page M.E.
        • Lucki I.
        Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment.
        Psychopharmacology. 2005; 182: 335-344
        • Daws L.C.
        • Toney G.M.
        • Gerhardt G.A.
        • Frazer A.
        In vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: Contribution of serotonin and norepinephrine transporters.
        J Pharmacol Exp Ther. 1998; 286: 967-976
        • Hensler J.G.
        • Ordway G.A.
        • Gambarana C.
        • Areso P.
        • Frazer A.
        Serotonergic neurons do not influence the regulation of beta adrenoceptors induced by either desipramine or isoproterenol.
        J Pharmacol Exp Ther. 1991; 256: 656-664
        • Cryan J.F.
        • Page M.E.
        • Lucki I.
        Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test.
        Eur J Pharmacol. 2002; 436: 197-205
        • Montanez S.
        • Daws L.C.
        • Gould G.G.
        • Gerhardt G.A.
        • Frazer A.
        Differential in vivo clearance of serotonin in rat dorsal raphe nucleus and CA3 region.
        Brain Res. 2002; 955: 236-244
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        2nd ed. 1986
        • Benmansour S.
        • Tejani-Butt S.M.
        • Hauptmann M.
        • Brunswick D.J.
        Lack of effect of high-dose cocaine on monoamine uptake sites in rat brain measured by quantitative autoradiography.
        Psychopharmacology. 1992; 106: 459-462
        • Gould G.G.
        • Altamirano A.V.
        • Javors M.A.
        • Frazer A.
        A comparison of the chronic treatment effects of venlafaxine and other antidepressants on serotonin and norepinephrine transporters.
        Biol Psychiatry. 2006; 59: 408-414
        • Tejani-Butt S.M.
        [3H]nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding.
        J Pharmacol Exp Ther. 1992; 260: 427-436
        • Galici R.
        • Galli A.
        • Jones D.J.
        • Sanchez T.A.
        • Saunders C.
        • Frazer A.
        • et al.
        Selective decreases in amphetamine self-administration and regulation of dopamine transporter function in diabetic rats.
        Neuroendocrinology. 2003; 77: 132-140
        • Shephard R.A.
        • Broadhurst P.L.
        Hyponeophagia and arousal in rats: Effects of diazepam, 5-methoxy-N,N-dimethyltryptamine, d-amphetamine and food deprivation.
        Psychopharmacology. 1982; 78: 368-372
        • Muskin P.R.
        • Fyer A.J.
        Treatment of panic disorder.
        J Clin Psychopharmacol. 1981; 1: 81-90
        • Hoehn-Saric R.
        Neurotransmitters in anxiety.
        Arch Gen Psychiatry. 1982; 39: 735-742
        • Kahn R.J.
        • McNair D.M.
        • Lipman R.S.
        • Covi L.
        • Rickels K.
        • Downing R.
        • et al.
        Imipramine and chlordiazepoxide in depressive and anxiety disorders.
        Arch Gen Psychiatry. 1986; 43: 79-85
        • Ballenger J.C.
        Overview of different pharmacotherapies for attaining remission in generalized anxiety disorder.
        J Clin Psychiatry. 2001; 62: 11-19
        • Donovan M.R.
        • Glue P.
        • Kolluri S.
        • Emir B.
        Comparative efficacy of antidepressants in preventing relapse in anxiety disorders—a meta-analysis.
        J Affect Disord. 2010; 123: 9-16
        • Fineberg N.A.
        • Gale T.M.
        Evidence-based pharmacotherapy of obsessive-compulsive disorder.
        Int J Neuropsychopharmacol. 2005; 8: 107-129
        • Foltin R.W.
        • Fischman M.W.
        • Nautiyal C.
        The effects of cocaine on food intake of baboons before, during, and after a period of repeated desipramine.
        Pharmacol Biochem Behav. 1990; 36: 869-874
        • Gatto G.J.
        • Murphy J.M.
        • McBride W.J.
        • Lumeng L.
        • Li T.K.
        Effects of fluoxetine and desipramine on palatability-induced ethanol consumption in the alcohol-nonpreferring (NP) line of rats.
        Alcohol. 1990; 7: 531-536
        • McBride W.J.
        • Murphy J.M.
        • Lumeng L.
        • Li T.K.
        Effects of Ro 15-4513, fluoxetine and desipramine on the intake of ethanol, water and food by the alcohol-preferring (P) and -nonpreferring (NP) lines of rats.
        Pharmacol Biochem Behav. 1988; 30: 1045-1050
        • Chaouloff F.
        Serotonin, stress and corticoids.
        J Psychopharmacol. 2000; 14: 139-151
        • Lucki I.
        Serotonin receptor specificity in anxiety disorders.
        J Clin Psychiatry. 1996; 57: 5-10
        • Bremner J.D.
        • Krystal J.H.
        • Southwick S.M.
        • Charney D.S.
        Noradrenergic mechanisms in stress and anxiety: II. Clinical studies.
        Synapse. 1996; 23: 39-51
        • Ressler K.J.
        • Nemeroff C.B.
        Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders.
        Depress Anxiety. 2000; 12: 2-19
        • Manta S.
        • Dong J.
        • Debonnel G.
        • Blier P.
        Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation.
        J Psychiatry Neurosci. 2009; 34: 272-280
        • Ciobica A.
        • Hritcu L.
        • Padurariu M.
        • Dobrin R.
        • Bild V.
        Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: Relevance for anxiety and affective disorders.
        Adv Med Sci. 2010; 55: 289-296
        • Netto S.M.
        • Silveira R.
        • Coimbra N.C.
        • Joca S.R.
        • Guimaraes F.S.
        Anxiogenic effect of median raphe nucleus lesion in stressed rats.
        Prog Neuropsychopharmacol Biol Psychiatry. 2002; 26: 1135-1141
        • Pum M.E.
        • Huston J.P.
        • Muller C.P.
        The role of cortical serotonin in anxiety and locomotor activity in Wistar rats.
        Behav Neurosci. 2009; 123: 449-454
        • Sziray N.
        • Kuki Z.
        • Nagy K.M.
        • Marko B.
        • Kompagne H.
        • Levay G.
        Effects of single and simultaneous lesions of serotonergic and noradrenergic pathways on open-space and bright-space anxiety-like behavior in two animal models.
        Behav Brain Res. 2010; 209: 93-98
        • Bechtholt A.J.
        • Hill T.E.
        • Lucki I.
        Anxiolytic effect of serotonin depletion in the novelty-induced hypophagia test.
        Psychopharmacology. 2007; 190: 531-540
        • Page M.E.
        • Detke M.J.
        • Dalvi A.
        • Kirby L.G.
        • Lucki I.
        Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test.
        Psychopharmacology (Berl). 1999; 147: 162-167
        • Holmes A.
        • Yang R.J.
        • Murphy D.L.
        • Crawley J.N.
        Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter.
        Neuropsychopharmacology. 2002; 27: 914-923
        • Cervo L.
        • Grignaschi G.
        • Rossi C.
        • Samanin R.
        Role of central serotonergic neurons in the effect of sertraline in rats in the forced swimming test.
        Eur J Pharmacol. 1991; 196: 217-222
        • Lucki I.
        • Singh A.
        • Kreiss D.S.
        Antidepressant-like behavioral effects of serotonin receptor agonists.
        Neurosci Biobehav Rev. 1994; 18: 85-95
        • Plaznik A.
        • Danysz W.
        • Kostowski W.
        Mesolimbic noradrenaline but not dopamine is responsible for organization of rat behavior in the forced swim test and an anti-immobilizing effect of desipramine.
        Pol J Pharmacol Pharm. 1985; 37: 347-357
        • Delgado P.L.
        • Charney D.S.
        • Price L.H.
        • Aghajanian G.K.
        • Landis H.
        • Heninger G.R.
        Serotonin function and the mechanism of antidepressant action.
        Arch Gen Psychiatry. 1990; 47: 411-418
        • Miller H.L.
        • Delgado P.L.
        • Salomon R.M.
        • Berman R.
        • Krystal J.H.
        • Heninger G.R.
        • et al.
        Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression.
        Arch Gen Psychiatry. 1996; 53: 117-128
        • Miller H.L.
        • Delgado P.L.
        • Salomon R.M.
        • Heninger G.R.
        • Charney D.S.
        Effects of alpha-methyl-para-tyrosine (AMPT) in drug-free depressed patients.
        Neuropsychopharmacology. 1996; 14: 151-157
        • Blier P.
        Crosstalk between the norepinephrine and serotonin systems and its role in the antidepressant response.
        J Psychiatry Neurosci. 2001; 26: S3-S10
        • Szabo S.T.
        • Blier P.
        Effects of the selective norepinephrine reuptake inhibitor reboxetine on norepinephrine and serotonin transmission in the rat hippocampus.
        Neuropsychopharmacology. 2001; 25: 845-857
        • Clement H.W.
        • Gemsa D.
        • Wesemann W.
        Serotonin-norepinephrine interactions: A voltammetric study on the effect of serotonin receptor stimulation followed in the N. raphe dorsalis and the Locus coeruleus of the rat.
        J Neural Transm Gen Sect. 1992; 88: 11-23
        • Mongeau R.
        • Blier P.
        • de Montigny C.
        The serotonergic and noradrenergic systems of the hippocampus: Their interactions and the effects of antidepressant treatments.
        Brain Res Brain Res Rev. 1997; 23: 145-195
        • Guiard B.P.
        • El Mansari M.
        • Merali Z.
        • Blier P.
        Functional interactions between dopamine, serotonin and norepinephrine neurons: An in-vivo electrophysiological study in rats with monoaminergic lesions.
        Int J Neuropsychopharmacol. 2008; 11: 625-639
        • Ordway G.
        • Mann J.
        Neurocircuitry of mood disorders.
        in: Davis K.L. Coyle J.T. Nemeroff C. Neuropsychopharmacology: The Fifth Generation of Progress. Lippinkott Williams & Willkins, Philadelphia2002: 1051-1064
        • Reneric J.P.
        • Lucki I.
        Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test.
        Psychopharmacology. 1998; 136: 190-197
        • Bansal V.
        • Ryu S.Y.
        • Lopez N.
        • Allexan S.
        • Krzyzaniak M.
        • Eliceiri B.
        • et al.
        Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury [published online ahead of print March 1].
        Inflammation. 2011;
        • Corcoran C.
        • Connor T.J.
        • O'Keane V.
        • Garland M.R.
        The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: A preliminary report.
        Neuroimmunomodulation. 2005; 12: 307-309
        • Majoie H.J.
        • Rijkers K.
        • Berfelo M.W.
        • Hulsman J.A.
        • Myint A.
        • Schwarz M.
        • et al.
        Vagus nerve stimulation in refractory epilepsy: Effects on pro- and anti-inflammatory cytokines in peripheral blood.
        Neuroimmunomodulation. 2011; 18: 52-56
        • Dantzer R.
        • O'Connor J.C.
        • Freund G.G.
        • Johnson R.W.
        • Kelley K.W.
        From inflammation to sickness and depression: When the immune system subjugates the brain.
        Nat Rev Neurosci. 2008; 9: 46-56
        • Lenox R.
        • Frazer A.
        Mechanism of action of antidepressants and mood-stabilizers.
        in: Davis K.L. Charney D. Coyle J.T. Nemeroff C. Neuropsychopharmacology: The Fifth Generation of Progress. Lippincott Williams & Wilkins, Philadelphia2002: 1139-1163