Advertisement
Archival Report| Volume 70, ISSUE 9, P888-896, November 01, 2011

Download started.

Ok

Prioritization and Association Analysis of Murine-Derived Candidate Genes in Anxiety-Spectrum Disorders

      Background

      Anxiety disorders are common psychiatric conditions that are highly comorbid with each other and related phenotypes such as depression, likely due to a shared genetic basis. Fear-related behaviors in mice have long been investigated as potential models of anxiety disorders, making integration of information from both murine and human genetic data a powerful strategy for identifying potential susceptibility genes for these conditions.

      Methods

      We combined genome-wide association analysis of fear-related behaviors with strain distribution pattern analysis in heterogeneous stock mice to identify a preliminary list of 52 novel candidate genes. We ranked these according to three complementary sources of prior anxiety-related genetic data: 1) extant linkage and knockout studies in mice, 2) a meta-analysis of human linkage scans, and 3) a preliminary human genome-wide association study. We genotyped tagging single nucleotide polymorphisms covering the nine top-ranked regions in a two-stage association study of 1316 subjects from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders chosen for high or low genetic loading for anxiety-spectrum phenotypes (anxiety disorders, neuroticism, and major depression).

      Results

      Multiple single nucleotide polymorphisms in the PPARGC1A gene demonstrated association in both stages that survived gene-wise correction for multiple testing.

      Conclusions

      Integration of genetic data across human and murine studies suggests PPARGC1A as a potential susceptibility gene for anxiety-related disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kessler R.C.
        • Berglund P.
        • Demler O.
        • Jin R.
        • Merikangas K.R.
        • Walters E.E.
        Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication.
        Arch Gen Psychiatry. 2005; 62: 593-602
        • Hettema J.M.
        • Neale M.C.
        • Kendler K.S.
        A review and meta-analysis of the genetic epidemiology of anxiety disorders.
        Am J Psychiatry. 2001; 158: 1568-1578
        • Andrews G.
        • Stewart G.
        • Morris-Yates A.
        • Holt P.
        • Henderson S.
        Evidence for a general neurotic syndrome.
        Br J Psychiatry. 1990; 157: 6-12
        • Bienvenu O.J.
        • Brown C.
        • Samuels J.F.
        • Liang K.Y.
        • Costa P.T.
        • Eaton W.W.
        • et al.
        Normal personality traits and comorbidity among phobic, panic and major depressive disorders.
        Psychiatry Res. 2001; 102: 73-85
        • Khan A.A.
        • Jacobson K.C.
        • Gardner C.O.
        • Prescott C.A.
        • Kendler K.S.
        Personality and comorbidity of common psychiatric disorders.
        Br J Psychiatry. 2005; 186: 190-196
        • Jardine R.
        • Martin N.G.
        • Henderson A.S.
        Genetic covariation between neuroticism and the symptoms of anxiety and depression.
        Genet Epidemiol. 1984; 1: 89-107
        • Hettema J.M.
        • Neale M.C.
        • Myers J.M.
        • Prescott C.A.
        • Kendler K.S.
        A population-based twin study of the relationship between neuroticism and internalizing disorders.
        Am J Psychiatry. 2006; 163: 857-864
        • Kendler K.S.
        • Gardner C.O.
        • Gatz M.
        • Pedersen N.L.
        The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample.
        Psychol Med. 2007; 37: 453-462
        • Smoller J.W.
        Who's afraid of anxiety genetics?.
        Biol Psychiatry. 2011; 69: 506-507
        • Maron E.
        • Hettema J.M.
        • Shlik J.
        Advances in molecular genetics of panic disorder.
        Mol Psychiatry. 2010; 15: 681-701
        • Otowa T.
        • Yoshida E.
        • Sugaya N.
        • Yasuda S.
        • Nishimura Y.
        • Inoue K.
        • et al.
        Genome-wide association study of panic disorder in the Japanese population.
        J Hum Genet. 2009; 54: 122-126
        • Erhardt A.
        • Czibere L.
        • Roeske D.
        • Lucae S.
        • Unschuld P.G.
        • Ripke S.
        • et al.
        TMEM132D, a new candidate for anxiety phenotypes: Evidence from human and mouse studies.
        Mol Psychiatry. 2010; 16: 647-663
        • Flint J.
        Animal models of anxiety and their molecular dissection.
        Semin Cell Dev Biol. 2003; 14: 37-42
        • Smoller J.W.
        • Acierno Jr., J.S.
        • Rosenbaum J.F.
        • Biederman J.
        • Pollack M.H.
        • Meminger S.
        • et al.
        Targeted genome screen of panic disorder and anxiety disorder proneness using homology to murine QTL regions.
        Am J Med Genet. 2001; 105: 195-206
        • Donner J.
        • Pirkola S.
        • Silander K.
        • Kananen L.
        • Terwilliger J.D.
        • Lonnqvist J.
        • et al.
        An association analysis of murine anxiety genes in humans implicates novel candidate genes for anxiety disorders.
        Biol Psychiatry. 2008; 64: 672-680
        • Valdar W.
        • Solberg L.C.
        • Gauguier D.
        • Burnett S.
        • Klenerman P.
        • Cookson W.O.
        • et al.
        Genome-wide genetic association of complex traits in heterogeneous stock mice.
        Nat Genet. 2006; 38: 879-887
        • Mott R.
        • Talbot C.J.
        • Turri M.G.
        • Collins A.C.
        • Flint J.
        A method for fine mapping quantitative trait loci in outbred animal stocks.
        Proc Natl Acad Sci U S A. 2000; 97: 12649-12654
        • Sanders A.R.
        • Levinson D.F.
        • Duan J.
        • Dennis J.M.
        • Li R.
        • Kendler K.S.
        • et al.
        The Internet-based MGS2 control sample: Self report of mental illness.
        Am J Psychiatry. 2010; 167: 854-865
        • Kessler R.C.
        • Andrews G.
        • Mroczek D.K.
        • Ustun B.
        • Wittchen H.-U.
        The World Health Organization Composite International Diagnostic Interview Short Form (CIDI-SF).
        Int J Methods Psychiatr Res. 1998; 7: 171-185
        • Eysenck H.
        • Eysenck S.
        • Barrett P.
        A revised version of the psychoticism scale.
        Pers Individ Dif. 1985; 6: 21-29
        • Muthen L.K.
        • Muthen B.O.
        Mplus User's Guide.
        Fourth Edition. Muthen and Muthen, Los Angeles2006
        • Krueger R.F.
        The structure of common mental disorders.
        Arch Gen Psychiatry. 1999; 56: 921-926
        • van den Oord E.J.
        • Kuo P.H.
        • Hartmann A.M.
        • Webb B.T.
        • Moller H.J.
        • Hettema J.M.
        • et al.
        Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism.
        Arch Gen Psychiatry. 2008; 65: 1062-1071
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Med Genet. 2007; 81: 559-575
        • Kuo P.H.
        • Bukszar J.
        • van den Oord E.J.
        Estimating the number and size of the main effects in genome-wide case-control association studies.
        BMC Proc. 2007; 1: S143
        • Kendler K.S.
        • Prescott C.A.
        A population-based twin study of lifetime major depression in men and women.
        Arch Gen Psychiatry. 1999; 56: 39-44
        • Kendler K.S.
        • Prescott C.A.
        Genes, Environment, and Psychopathology: Understanding the Causes of Psychiatric and Substance Use Disorders.
        Guilford Press, New York2006
        • Spitzer R.L.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-III-R (SCID).
        Biometrics Research Department, New York State Psychiatric Institute, New York1985
        • Eysenck H.J.
        • Eysenck S.B.G.
        Manual of the Eysenck Personality Questionnaire.
        Hodder and Stoughton, London1975
        • Hettema J.M.
        • An S.S.
        • Bukszar J.
        • van den Oord E.J.
        • Neale M.C.
        • Kendler K.S.
        • et al.
        Catechol-O-methyltransferase contributes to genetic susceptibility shared among anxiety spectrum phenotypes.
        Biol Psychiatry. 2008; 64: 302-310
        • Middeldorp C.M.
        • Cath D.C.
        • Van Dyck R.
        • Boomsma D.I.
        The co-morbidity of anxiety and depression in the perspective of genetic epidemiology.
        Psychol Med. 2005; 35: 611-624
        • Jardine R.
        • Martin N.G.
        • Henderson A.S.
        Genetic covariation between neuroticism and the symptoms of anxiety and depression.
        Genet Epidemiol. 1984; 1: 89-107
        • Scherrer J.F.
        • True W.R.
        • Xian H.
        • Lyons M.J.
        • Eisen S.A.
        • Goldberg J.
        • et al.
        Evidence for genetic influences common and specific to symptoms of generalized anxiety and panic.
        J Affect Disord. 2000; 57: 25-35
        • Van Gestel S.
        • Houwing-Duistermaat J.J.
        • Adolfsson R.
        • van Duijn C.M.
        • Van Broeckhoven C.
        Power of selective genotyping in genetic association analyses of quantitative traits.
        Behav Genet. 2000; 30: 141-146
        • van den Oord E.J.C.G.
        A comparison between different designs and tests to detect QTLs in association studies.
        Behav Genet. 1999; 29: 245-256
        • Schork N.J.
        • Nath S.K.
        • Fallin D.
        • Chakravarti A.
        Linkage disequilibrium analysis of biallelic DNA markers, human quantitative trait loci, and threshold-defined case and control subjects.
        Am J Med Genet. 2000; 67: 1208-1218
        • Robles J.R.
        • van den Oord E.J.
        Iga972: A cross-platform application for optimizing LD studies using a genetic algorithm.
        Bioinformatics. 2004; 20: 3244-3245
        • van den Oord E.J.
        • Sullivan P.F.
        False discoveries and models for gene discovery.
        Trends Genet. 2003; 19: 537-542
        • Neale B.M.
        • Sham P.C.
        The future of association studies: Gene-based analysis and replication.
        Am J Med Genet. 2004; 75: 353-362
        • Straub R.E.
        • Sullivan P.F.
        • Ma Y.
        • Myakishev M.V.
        • Harris-Kerr C.
        • Wormley B.
        • et al.
        Susceptibility genes for nicotine dependence: A genome scan and followup in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study.
        Mol Psychiatry. 1999; 4: 129-144
        • Livak K.J.
        Allelic discrimination using fluorogenic probes and the 5' nuclease assay.
        Genet Anal. 1999; 14: 143-149
        • International HapMap Consortium
        The International HapMap Project.
        Nature. 2003; 426: 789-796
        • Barrett J.C.
        • Fry B.
        • Maller J.
        • Daly M.J.
        Haploview: Analysis and visualization of LD and haplotype maps.
        Bioinformatics. 2005; 21: 263-265
        • Smoller J.W.
        • Rosenbaum J.F.
        • Biederman J.
        • Susswein L.S.
        • Kennedy J.
        • Kagan J.
        • et al.
        Genetic association analysis of behavioral inhibition using candidate loci from mouse models.
        Am J Med Genet. 2001; 105: 226-235
        • Young E.J.
        • Lipina T.
        • Tam E.
        • Mandel A.
        • Clapcote S.J.
        • Bechard A.R.
        • et al.
        Reduced fear and aggression and altered serotonin metabolism in Gtf2ird1-targeted mice.
        Genes Brain Behav. 2008; 7: 224-234
        • Lin J.
        • Handschin C.
        • Spiegelman B.M.
        Metabolic control through the PGC-1 family of transcription coactivators.
        Cell Metab. 2005; 1: 361-370
        • Barroso I.
        • Luan J.
        • Sandhu M.S.
        • Franks P.W.
        • Crowley V.
        • Schafer A.J.
        • et al.
        Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes.
        Diabetologia. 2006; 49: 501-505
        • Sullivan P.F.
        • de Geus E.J.
        • Willemsen G.
        • James M.R.
        • Smit J.H.
        • Zandbelt T.
        • et al.
        Genome-wide association for major depressive disorder: A possible role for the presynaptic protein piccolo.
        Mol Psychiatry. 2009; 14: 359-375
        • St-Pierre J.
        • Drori S.
        • Uldry M.
        • Silvaggi J.M.
        • Rhee J.
        • Jager S.
        • et al.
        Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.
        Cell. 2006; 127: 397-408
        • Leone T.C.
        • Lehman J.J.
        • Finck B.N.
        • Schaeffer P.J.
        • Wende A.R.
        • Boudina S.
        • et al.
        PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis.
        PLoS Biol. 2005; 3: e101
        • Lucas E.K.
        • Markwardt S.J.
        • Gupta S.
        • Meador-Woodruff J.H.
        • Lin J.D.
        • Overstreet-Wadiche L.
        • et al.
        Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha.
        J Neurosci. 2010; 30: 7227-7235