Advertisement

Gene Profiling Reveals a Role for Stress Hormones in the Molecular and Behavioral Response to Food Restriction

      Background

      Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed.

      Methods

      Analysis of gene expression profiles in male C57BL/6J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a 5-day food restriction. Quantitative polymerase chain reaction was used to validate these findings and determine the time course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by enzyme-linked immunosorbent assay. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals.

      Results

      Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to nonrestricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state.

      Conclusions

      These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ferster C.B.
        • Skinner B.F.
        Schedules of Reinforcement.
        Copley Publishing Group, Acton1957
        • Clark F.C.
        The effect of deprivation and frequency of reinforcement on variable-interval responding.
        J Exp Anal Behav. 1958; 1: 221-228
        • Forestell C.A.
        • Schellinck H.M.
        • Boudreau S.E.
        • LoLordo V.M.
        Effect of food restriction on acquisition and expression of a conditioned odor discrimination in mice.
        Physiol Behav. 2001; 72: 559-566
        • Olds J.
        Effects of hunger and male sex hormone on self-stimulation of the brain.
        J Comp Physiol Psychol. 1958; 51: 320-324
        • Carroll M.E.
        • France C.P.
        • Meisch R.A.
        Food deprivation increases oral and intravenous drug intake in rats.
        Science. 1979; 205: 319-321
        • Cabeza de Vaca S.
        • Carr K.D.
        Food restriction enhances the central rewarding effect of abused drugs.
        J Neurosci. 1998; 18: 7502-7510
        • Friedman J.M.
        • Halaas J.L.
        Leptin and the regulation of body weight in mammals.
        Nature. 1998; 395: 763-770
        • Schwartz M.W.
        • Dallman M.F.
        • Woods S.C.
        Hypothalamic response to starvation: Implications for the study of wasting disorders.
        Am J Physiol. 1995; 269: R949-R957
        • Ahima R.S.
        • Prabakaran D.
        • Mantzoros C.
        • Qu D.
        • Lowell B.
        • Maratos-Flier E.
        • et al.
        Role of leptin in the neuroendocrine response to fasting.
        Nature. 1996; 382: 250-252
        • Hommel J.D.
        • Trinko R.
        • Sears R.M.
        • Georgescu D.
        • Liu Z.W.
        • Gao X.B.
        • et al.
        Leptin receptor signaling in midbrain dopamine neurons regulates feeding.
        Neuron. 2006; 51: 801-810
        • Fulton S.
        • Pissios P.
        • Manchon R.P.
        • Stiles L.
        • Frank L.
        • Pothos E.N.
        • et al.
        Leptin regulation of the mesoaccumbens dopamine pathway.
        Neuron. 2006; 51: 811-822
        • Myers M.G.
        • Münzberg H.
        • Leinninger G.M.
        • Leshan R.L.
        The geometry of leptin action in the brain: More complicated than a simple ARC.
        Cell Metab. 2009; 9: 117-123
        • Qu D.
        • Ludwig D.S.
        • Gammeltoft S.
        • Piper M.
        • Pelleymounter M.A.
        • Cullen M.J.
        • et al.
        A role for melanin-concentrating hormone in the central regulation of feeding behaviour.
        Nature. 1996; 380: 243-247
        • Baskin D.G.
        • Seeley R.J.
        • Kuijper J.L.
        • Lok S.
        • Weigle D.S.
        • Erickson J.C.
        • et al.
        Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting.
        Diabetes. 1998; 47: 538-543
        • Cabib S.
        • Orsini C.
        • Le Moal M.
        • Piazza P.V.
        Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience.
        Science. 2000; 289: 463-465
        • McClung C.A.
        • Nestler E.J.
        Neuroplasticity mediated by altered gene expression.
        Neuropsychopharmacology. 2008; 33: 3-17
        • Kandel E.R.
        The molecular biology of memory storage: A dialogue between genes and synapses.
        Science. 2001; 294: 1030-1038
        • Nestler E.J.
        Molecular neurobiology of addiction.
        Am J Addict. 2001; 10: 201-217
        • Trinko R.
        • Sears R.M.
        • Guarnieri D.J.
        • DiLeone R.J.
        Neural mechanisms underlying obesity and drug addiction.
        Physiol Behav. 2007; 91: 499-505
        • Haberny S.L.
        • Carr K.D.
        Comparison of basal and D-1 dopamine receptor agonist-stimulated neuropeptide gene expression in caudate-putamen and nucleus accumbens of ad libitum fed and food-restricted rats.
        Brain Res Mol Brain Res. 2005; 141: 121-127
        • Carr K.D.
        Chronic food restriction: Enhancing effects on drug reward and striatal cell signaling.
        Physiol Behav. 2007; 91: 459-472
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.
        Methods. 2001; 25: 402-408
        • Gourley S.L.
        • Kiraly D.D.
        • Howell J.L.
        • Olausson P.
        • Taylor J.R.
        Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone.
        Biol Psychiatry. 2008; 64: 884-890
        • Allison D.B.
        • Cui X.
        • Page G.P.
        • Sabripour M.
        Microarray data analysis: From disarray to consolidation and consensus.
        Nat Rev Genet. 2006; 7: 55-65
        • Anwar A.
        • Keating A.K.
        • Joung D.
        • Sather S.
        • Kim G.K.
        • Sawczyn K.K.
        • et al.
        Mer tyrosine kinase (MerTK) promotes macrophage survival following exposure to oxidative stress.
        J Leukoc Biol. 2009; 86: 73-79
        • Auphan N.
        • DiDonato J.A.
        • Rosette C.
        • Helmberg A.
        • Karin M.
        Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis.
        Science. 1995; 270: 286-290
        • D'Adamio F.
        • Zollo O.
        • Moraca R.
        • Ayroldi E.
        • Bruscoli S.
        • Bartoli A.
        • et al.
        A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death.
        Immunity. 1997; 7: 803-812
        • Dufner-Beattie J.
        • Wang F.
        • Kuo Y.M.
        • Gitschier J.
        • Eide D.
        • Andrews G.K.
        The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice.
        J Biol Chem. 2003; 278: 33474-33481
        • Graham D.K.
        • Dawson T.L.
        • Mullaney D.L.
        • Snodgrass H.R.
        • Earp H.S.
        Cloning and mRNA expression analysis of a novel human protooncogene, c-mer.
        Cell Growth Differ. 1994; 5: 647-657
        • Han E.S.
        • Muller F.L.
        • Pérez V.I.
        • Qi W.
        • Liang H.
        • Xi L.
        • et al.
        The in vivo gene expression signature of oxidative stress.
        Physiol Genomics. 2008; 34: 112-126
        • Kaestner K.H.
        • Christy R.J.
        • Lane M.D.C.P.
        Mouse insulin-responsive glucose transporter gene: Characterization of the gene and trans-activation by the CCAAT/enhancer binding protein.
        Proc Natl Acad Sci U S A. 1990; 87: 251-255
        • Kersten S.
        • Mandard S.
        • Tan N.S.
        • Escher P.
        • Metzger D.
        • Chambon P.
        • et al.
        Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene.
        J Biol Chem. 2000; 275: 28488-28493
        • Kobayashi T.
        • Deak M.
        • Morrice N.
        • Cohen P.C.P.
        Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase.
        Biochem J. 1999; 344: 189-197
        • Koliwad S.K.
        • Kuo T.
        • Shipp L.E.
        • Gray N.E.
        • Backhed F.
        • So A.Y.
        • et al.
        Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism.
        J Biol Chem. 2009; 284: 25593-25601
        • Lee R.S.
        • Tamashiro K.L.
        • Yang X.
        • Purcell R.H.
        • Harvey A.
        • Willour V.L.
        • et al.
        Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice.
        Endocrinology. 2010; 151: 4332-4343
        • Nichols C.D.
        • Sanders-Bush E.
        Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins.
        J Neurochem. 2004; 90: 576-584
        • Ring R.H.
        • Valo Z.
        • Gao C.
        • Barish M.E.
        • Singer-Sam J.
        The Cdkn1a gene (p21Waf1/Cip1) is an inflammatory response gene in the mouse central nervous system.
        Neurosci Lett. 2003; 350: 73-76
        • Scheinman R.I.
        • Cogswell P.C.
        • Lofquist A.K.
        • Baldwin A.S.
        Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids.
        Science. 1995; 270: 283-286
        • Tomasini R.
        • Samir A.A.
        • Vaccaro M.I.
        • Pebusque M.J.
        • Dagorn J.C.
        • Iovanna J.L.
        • et al.
        Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing.
        J Biol Chem. 2001; 276: 44185-44192
        • Tullo A.
        • Mastropasqua G.
        • Bourdon J.C.
        • Centonze P.
        • Gostissa M.
        • Costanzo A.
        • et al.
        Adenosine deaminase, a key enzyme in DNA precursors control, is a new p73 target.
        Oncogene. 2003; 22: 8738-8748
        • von Hertzen L.S.
        • Giese K.P.
        Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation.
        J Neurosci. 2005; 25: 1935-1942
        • Webster M.K.
        • Goya L.
        • Ge Y.
        • Maiyar A.C.
        • Firestone G.L.C.P.
        Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum.
        Mol Cell Biol. 1993; 13: 2031-2040
        • Wu P.
        • Sato J.
        • Zhao Y.
        • Jaskiewicz J.
        • Popov K.M.
        • Harris R.A.C.P.
        Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart.
        Biochem J. 1998; 329: 197-201
        • Adam T.C.
        • Epel E.S.
        Stress, eating and the reward system.
        Physiol Behav. 2007; 91: 449-458
        • Dallman M.F.
        • Pecoraro N.C.
        • La Fleur S.E.
        • Warne J.P.
        • Ginsberg A.B.
        • Akana S.F.
        • et al.
        Glucocorticoids, chronic stress, and obesity.
        Prog Brain Res. 2006; 153: 75-105
        • Hodos W.
        Progressive ratio as a measure of reward strength.
        Science. 1961; 134: 943-944
        • Abbas T.
        • Dutta A.
        p21 in cancer: Intricate networks and multiple activities.
        Nat Rev Cancer. 2009; 9: 400-414
        • van Lookeren Campagne M.
        • Gill R.
        Cell cycle-related gene expression in the adult rat brain: Selective induction of cyclin G1 and p21WAF1/CIP1 in neurons following focal cerebral ischemia.
        Neuroscience. 1998; 84: 1097-1112
        • Park D.S.
        • Morris E.J.
        • Padmanabhan J.
        • Shelanski M.L.
        • Geller H.M.
        • Greene L.A.
        Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents.
        J Cell Biol. 1998; 143: 457-467
        • Shim J.
        • Lee H.
        • Park J.
        • Kim H.
        • Choi E.J.
        A non-enzymatic p21 protein inhibitor of stress-activated protein kinases.
        Nature. 1996; 381: 804-806
        • Kim H.K.
        • Youn B.S.
        • Shin M.S.
        • Namkoong C.
        • Park K.H.
        • Baik J.H.
        • et al.
        Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight.
        Diabetes. 2010; 59: 2772-2780
        • Lee C.K.
        • Weindruch R.
        • Prolla T.A.
        Gene-expression profile of the ageing brain in mice.
        Nat Genet. 2000; 25: 294-297
        • Yamamoto Y.
        • Tanahashi T.
        • Kawai T.
        • Chikahisa S.
        • Katsuura S.
        • Nishida K.
        • et al.
        Changes in behavior and gene expression induced by caloric restriction in C57BL/6 mice.
        Physiol Genomics. 2009; 39: 227-235
        • Pankevich D.E.
        • Teegarden S.L.
        • Hedin A.D.
        • Jensen C.L.
        • Bale T.L.
        Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating.
        J Neurosci. 2010; 30: 16399-16407
        • Datson N.A.
        • Morsink M.C.
        • Meijer O.C.
        • de Kloet E.R.
        Central corticosteroid actions: Search for gene targets.
        Eur J Pharmacol. 2008; 583: 272-289
        • Huang B.
        • Wu P.
        • Bowker-Kinley M.M.
        • Harris R.A.
        Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin.
        Diabetes. 2002; 51: 276-283
        • Covington H.E.
        • Miczek K.A.
        Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: Dissociation from corticosterone activation.
        Psychopharmacology (Berl). 2005; 183: 331-340
        • McEwen B.S.
        Physiology and neurobiology of stress and adaptation: Central role of the brain.
        Physiol Rev. 2007; 87: 873-904
        • Koob G.F.
        A role for brain stress systems in addiction.
        Neuron. 2008; 59: 11-34
        • Piazza P.V.
        • Le Moal M.
        The role of stress in drug self-administration.
        Trends Pharmacol Sci. 1998; 19: 67-74
        • Sinha R.
        Chronic stress, drug use, and vulnerability to addiction.
        Ann N Y Acad Sci. 2008; 1141: 105-130