Advertisement
Archival Report| Volume 70, ISSUE 12, P1127-1133, December 15, 2011

Download started.

Ok

Exploring the Neural Correlates of Delusions of Reference

  • Mahesh Menon
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Schizophrenia Program, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada

    Multimodal Imaging Group, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada
    Search for articles by this author
  • Taylor W. Schmitz
    Affiliations
    Department of Psychology, University of Toronto, Toronto, Canada
    Search for articles by this author
  • Adam K. Anderson
    Affiliations
    Department of Psychology, University of Toronto, Toronto, Canada
    Search for articles by this author
  • Ariel Graff
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Schizophrenia Program, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada

    Multimodal Imaging Group, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada
    Search for articles by this author
  • Michele Korostil
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Schizophrenia Program, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada
    Search for articles by this author
  • David Mamo
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Multimodal Imaging Group, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada

    Geriatric Mental Health Program, Centre for Addiction & Mental Health, Toronto, Canada
    Search for articles by this author
  • Philip Gerretsen
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Multimodal Imaging Group, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada

    Geriatric Mental Health Program, Centre for Addiction & Mental Health, Toronto, Canada
    Search for articles by this author
  • Jean Addington
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Schizophrenia Program, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada

    Department of Psychiatry, University of Calgary, Calgary, Canada
    Search for articles by this author
  • Gary Remington
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Schizophrenia Program, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada
    Search for articles by this author
  • Shitij Kapur
    Correspondence
    Address correspondence to Shitij Kapur, M.D., Ph.D., Institute of Psychiatry, Box P001, De Crespigny Park, London, United Kingdom, SE5 8AF
    Affiliations
    Department of Psychiatry, University of Toronto, Toronto, Canada

    Schizophrenia Program, PET Centre, Centre for Addiction & Mental Health, Toronto, Canada

    King's College London, Institute of Psychiatry, London, United Kingdom
    Search for articles by this author

      Background

      Referential delusions are the most common symptom of schizophrenia and offer an opportunity to examine the neural correlates of delusions because they occur in discrete episodes that can be studied in the scanner. The cortical midline structures (CMS) and subcortical regions, including the amygdala and striatum, are linked with self-reference in healthy adults. Less is known about the neural substrates of altered self-reference in schizophrenia.

      Methods

      In this study, patients with schizophrenia experiencing prominent referential delusions (n = 18) and healthy control subjects (n = 17) were presented with ambiguous sentences while in the magnetic resonance imaging scanner and asked to rate whether they felt the sentences had been written specifically about them. The sentences were either generic (nonpersonalized) or individually tailored personalized sentences, designed to induce referential ideation. We hypothesized that both groups would show activity in the CMS, limbic, and striatal regions and that induced referential ideation would be associated with greater activity in striatal areas in patients with schizophrenia.

      Results

      A robust main effect of endorsement (endorsed vs. nonendorsed) was observed in the CMS, as well as subcortical regions, including the nucleus accumbens/ventral striatum, amygdala, insula, and midbrain dopamine regions. A group-by-endorsement interaction was seen in the medial prefrontal cortex, insula and nucleus accumbens/ventral striatum. Activity in insula and ventral striatum also correlated with the strength of the delusions of reference.

      Conclusions

      Referential ideation in persons with delusions is associated with heightened CMS, limbic and striatal activity and reduced differentiation between self- and non-self-relevant information.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jaspers K.
        Allgemeine psychopathologie.
        Springer, Berlin1913
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        (4th ed). American Psychiatric Association, Washington, DC1994
        • Berridge K.C.
        • Robinson T.E.
        What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience?.
        Brain Res Rev. 1998; 28: 309-369
        • Kapur S.
        Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia.
        Am J Psychiatry. 2003; 160: 13-23
        • Abi-Dargham A.
        • Rodenhiser J.
        • Printz D.
        • Zea-Ponce Y.
        • Gil R.
        • Kegeles L.S.
        • et al.
        Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.
        Proc Natl Acad Sci U S A. 2000; 97: 8104-8109
        • Laruelle M.
        • Abi-Dargham A.
        Dopamine as the wind of the psychotic fire: New evidence from brain imaging studies.
        J Psychopharmacol. 1999; 13: 358-371
        • Kapur S.
        How antipsychotics become anti-“psychotic”—from dopamine to salience to psychosis.
        Trends Pharmacol Sci. 2004; 25: 402-406
        • Juckel G.
        • Schlagenhauf F.
        • Koslowski M.
        • Filonov D.
        • Wustenberg T.
        • Villringer A.
        • et al.
        Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics.
        Psychopharmacology. 2006; 187: 222-228
        • Juckel G.
        • Schlagenhauf F.
        • Koslowski M.
        • Filonow D.
        • Knutson B.
        • Wrase J.
        • et al.
        Ventral striatum activation by typical versus atypical neuroleptics in a fMRI paradigm with monetary incentive stimuli.
        Pharmacopsychiatry. 2005; 38 (252–252)
        • Juckel G.
        • Schlagenhauf F.
        • Koslowski M.
        • Wustenberg T.
        • Villringer A.
        • Knutson B.
        • et al.
        Dysfunction of ventral striatal reward prediction in schizophrenia.
        Neuroimage. 2006; 29: 409-416
        • Schlagenhauf F.
        • Juckel G.
        • Koslowski M.
        • Kahnt T.
        • Knutson B.
        • Dembler T.
        • et al.
        Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine.
        Psychopharmacology. 2008; 196: 673-684
        • Jensen J.
        • Willeit M.
        • Zipursky R.B.
        • Savina I.
        • Smith A.J.
        • Menon M.
        • et al.
        The formation of abnormal associations in schizophrenia: Neural and behavioral evidence.
        Neuropsychopharmacology. 2007; 33: 473-479
        • Roiser J.P.
        • Stephan K.E.
        • den Ouden H.E.
        • Barnes T.R.
        • Friston K.J.
        • Joyce E.M.
        Do patients with schizophrenia exhibit aberrant salience?.
        Psychol Med. 2009; 39: 199-209
        • Roiser J.P.
        • Stephan K.E.
        • den Ouden H.E.
        • Friston K.J.
        • Joyce E.M.
        Adaptive and aberrant reward prediction signals in the human brain.
        Neuroimage. 2010; 50: 657-664
        • Murray G.
        • Corlett P.
        • Clark L.
        • Pessiglione M.
        • Blackwell A.
        • Honey G.
        • et al.
        Substantia nigra/ventral tegmental reward prediction error disruption in psychosis.
        Mol Psychiatry. 2008; 13: 239-276
        • Romaniuk L.
        • Honey G.
        • King J.
        • Whalley H.
        • McIntosh A.
        • Levita L.
        • et al.
        Midbrain activation during pavlovian conditioning and delusional symptoms in schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 1246-1254
        • Corlett P.
        • Murray G.
        • Honey G.
        • Aitken M.
        • Shanks D.
        • Robbins T.
        • et al.
        Disrupted prediction-error signal in psychosis: Evidence for an associative account of delusions.
        Brain. 2007; 130: 2387-2400
        • Heinz A.
        • Schlagenhauf F.
        Dopaminergic dysfunction in schizophrenia: salience attribution revisited.
        Schizophr Bull. 2010; 36: 472-485
        • Kraepelin E.
        Über Sprachstörungen im Traume.
        Engelmann, Leipzig1906
        • World_Health_Organization
        Report of the International Pilot Study of Schizophrenia.
        WHO Publications, Geneva1973
        • Startup M.
        • Startup S.
        On two kinds of delusion of reference.
        Psychiatr Res. 2005; 137: 87-92
        • Johnson S.C.
        • Baxter L.C.
        • Wilder L.S.
        • Pipe J.G.
        • Heiserman J.E.
        • Prigatano G.P.
        Neural correlates of self-reflection.
        Brain. 2002; 125: 1808-1814
        • Schmitz T.W.
        • Kawahara-Baccus T.N.
        • Johnson S.C.
        Metacognitive evaluation, self-relevance, and the right prefrontal cortex.
        Neuroimage. 2004; 22: 941-947
        • Fossati P.
        • Hevenor S.J.
        • Graham S.J.
        • Grady C.
        • Keightley M.L.
        • Craik F.
        • et al.
        In search of the emotional self: An fMRI study using positive and negative emotional words.
        Am J Psychiatry. 2003; 160: 1938-1945
        • Kelley W.M.
        • Macrae C.N.
        • Wyland C.L.
        • Caglar S.
        • Inati S.
        • Heatherton T.F.
        Finding the self?.
        J Cogn Neurosci. 2002; 14: 785-794
        • Macrae C.N.
        • Moran J.M.
        • Heatherton T.F.
        • Banfield J.F.
        • Kelley W.M.
        Medial prefrontal activity predicts memory for self.
        Cereb Cortex. 2004; 14: 647-654
        • Mitchell J.P.
        • Banaji M.R.
        • Macrae C.N.
        The link between social cognition and self-referential thought in the medial prefrontal cortex.
        J Cogn Neurosci. 2005; 17: 1306-1315
        • Johnson S.C.
        • Schmitz T.W.
        • Kawahara-Baccus T.N.
        • Rowley H.A.
        • Alexander A.L.
        • Lee J.H.
        • et al.
        The cerebral response during subjective choice with and without self-reference.
        J Cogn Neurosci. 2005; 17: 1897-1906
        • Northoff G.
        • Heinzel A.
        • Greck M.
        • Bennpohl F.
        • Dobrowolny H.
        • Panksepp J.
        Self-referential processing in our brain—A meta-analysis of imaging studies on the self.
        Neuroimage. 2006; 31: 440-457
        • Northoff G.
        • Bermpohl F.
        Cortical midline structures and the self.
        Trends Cogn Sci. 2004; 8: 102-107
        • Schmitz T.W.
        • Johnson S.C.
        Relevance to self: A brief review and framework of neural systems underlying appraisal.
        Neurosci Biobehav Rev. 2007; 31: 585-596
        • Murphy E.R.
        • Brent B.K.
        • Benton M.
        • Pruitt P.
        • Diwadkar V.
        • Rajarethinam R.P.
        • et al.
        Differential processing of metacognitive evaluation and the neural circuitry of the self and others in schizophrenia: A pilot study.
        Schizophr Res. 2010; 116: 252-258
        • Blackwood N.J.
        • Bentall R.P.
        • Ffytche D.H.
        • Simmons A.
        • Murray R.M.
        • Howard R.J.
        Persecutory delusions and the determination of self-relevance: An fMRI investigation.
        Psychol Med. 2004; 34: 591-596
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry. 1998; 59 (quiz 34–57): 22-33
        • Wilkenson G.S.
        • Jastak J.
        Wide Range Achievement Test—Third Edition (WRAT-3).
        Wide Range, Wilmington, DE1993
        • Appelbaum P.S.
        • Grisso T.
        The Macarthur Treatment Competence Study.
        Law Hum Behav. 1995; 19: 105-126
        • Mawlawi O.
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Chatterjee R.
        • Hwang D.R.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography.
        J Cereb Blood Flow Metab. 2001; 21: 1034-1057
        • Woods S.W.
        Chlorpromazine equivalent doses for the newer atypical antipsychotics.
        J Clin Psychiatry. 2003; 64: 663-667
        • van der Meer L.
        • Costafreda S.
        • Aleman A.
        • David A.S.
        Self-reflection and the brain: A theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia.
        Neurosci Biobehav Rev. 2010; 34: 935-946
        • Schneider F.
        • Bermpohl F.
        • Heinzel A.
        • Rotte M.
        • Walter M.
        • Tempelmann C.
        • et al.
        The resting brain and our self: Self relatedness modulates resting state neural activity in cortical midline structures.
        Neuroscience. 2008; 157: 120-131
        • Gusnard D.
        • Akbudak E.
        • Shulman G.
        • Raichle M.E.
        Role of medial prefrontal cortex in a default mode of brain function.
        NeuroImage. 2001; 13 (S414–S414)
        • Gusnard D.A.
        • Akbudak E.
        • Shulman G.L.
        • Raichle M.E.
        Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 4259-4264
        • Raichle M.E.
        • MacLeod A.M.
        • Snyder A.Z.
        • Powers W.J.
        • Gusnard D.A.
        • Shulman G.L.
        A default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 676-682
        • Salvador R.
        • Sarró S.
        • Gomar J.J.
        • Ortiz-Gil J.
        • Vila F.
        • Capdevila A.
        • et al.
        Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia.
        Hum Brain Mapp. 2010; 31: 2003-2014
        • Seidman L.J.
        • Whitfield-Gabrieli S.
        • Thermenos H.W.
        • Rosso I.
        • Makris N.
        • Milanovic S.
        • et al.
        Default network and medial prefrontal cortex dysfunction in schizophrenia and in first degree relatives of persons with schizophrenia.
        Schizophr Res. 2010; 117: 170-171
        • Whitfield-Gabrieli S.
        • Thermenos H.W.
        • Milanovic S.
        • Tsuang M.T.
        • Faraone S.V.
        • McCarley R.W.
        • et al.
        Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives persons with schizophrenia.
        Proc Natl Acad Sci U S A. 2009; 106: 1279-1284
        • Hooker C.
        • Park S.
        You must be looking at me: The nature of gaze perception in schizophrenia patients.
        Cogn Neuropsychiatry. 2005; 10: 327-345
        • Rosse R.
        • Kendrick K.
        • Wyatt R.
        • Isaac A.
        • Deutsch S.
        Gaze discrimination in patients with schizophrenia: Preliminary report.
        Am J Psychiatry. 1994; 151: 919-921
        • Menon M.
        • Raitsin S.
        • Graff A.
        • Hooker C.
        • Kapur S.
        Exploring the neural basis of gaze perception errors in schizophrenia.
        Schizophr Res. 2010; 117: 354
        • Pelphrey K.A.
        • Viola R.J.
        • McCarthy G.
        When strangers pass.
        Psychol Sci. 2004; 15: 598-603
        • Damasio A.R.
        Descartes' Error: Emotion, Reason, and the Human Brain.
        G. P. Putnam's Sons, New York1994
        • Park I.H.
        • Ku J.
        • Lee H.
        • Kim S.Y.
        • Kim S.I.
        • Yoon K.J.
        • et al.
        Disrupted theory of mind network processing in response to idea of reference evocation in schizophrenia.
        Acta Psychiatr Scand. 2010; 123: 43-54