Catechol-O-Methyltransferase Val158Met Polymorphism Moderates Anterior Cingulate Volume in Posttraumatic Stress Disorder


      Posttraumatic stress disorder (PTSD) is associated with structural and functional compromise of the anterior cingulate cortex (ACC), which may in turn be associated with impairment of its ability to regulate the amygdala. The Val158Met polymorphism in the catechol-O-methyltransferase gene, which substantially influences dopamine inactivation in the frontal lobe in general and in ACC in particular, may moderate ACC integrity in PTSD.


      We tested this hypothesis in a sample of Vietnam and Persian Gulf War veterans who experienced substantial military operational stress, including 51 who met criteria for PTSD and 48 matched controls who did not.


      Participants with PTSD were previously reported to have smaller ACC volumes than controls in this sample. A novel repeated-measures analysis of variance was conducted with PTSD diagnosis, Val158Met genotype, and their interaction predicting left and right ACC volume. Genotype was not directly related to ACC volume, but it did significantly interact with the PTSD diagnosis. The difference in ACC volume between the participants without PTSD and participants with PTSD was greater among individuals homozygous for the Val allele than among carriers of the Met allele. This finding was driven largely by the right ACC. Analyses of Caucasian-only, non–Caucasian-only, and male-only subsamples indicated similar patterns.


      Our findings suggest Val158Met genotype moderates the effect of PTSD-related processes on right ACC volume.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • True W.R.
        • Rice J.
        • Eisen S.A.
        • Heath A.C.
        • Goldberg J.
        • Lyons M.J.
        • et al.
        A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms.
        Arch Gen Psychiatry. 1993; 50: 257-264
        • Xian H.
        • Chantarujikapong S.I.
        • Scherrer J.F.
        • Eisen S.A.
        • Lyons M.J.
        • Goldberg J.
        • et al.
        Genetic and environmental influences on posttraumatic stress disorder, alcohol and drug dependence in twin pairs.
        Drug Alcohol Depend. 2000; 61: 95-102
        • Voisey J.
        • Swagell C.D.
        • Hughes I.P.
        • Morris C.P.
        • van Daal A.
        • Noble E.P.
        • et al.
        The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans.
        Depress Anxiety. 2009; 26: 28-33
        • Broekman B.F.
        • Olff M.
        • Boer F.
        The genetic background to PTSD.
        Neurosci Biobehav Rev. 2007; 31: 348-362
        • Koenen K.C.
        Genetics of posttraumatic stress disorder: Review and recommendations for future studies.
        J Trauma Stress. 2007; 20: 737-750
        • Norrholm S.D.
        • Ressler K.J.
        Genetics of anxiety and trauma-related disorders.
        Neuroscience. 2009; 164: 272-287
        • Bailey J.N.
        • Goenjian A.K.
        • Noble E.P.
        • Walling D.P.
        • Ritchie T.
        • Goenjian H.A.
        PTSD and dopaminergic genes, DRD2 and DAT, in multigenerational families exposed to the Spitak earthquake.
        Psychiatry Res. 2010; 178: 507-510
        • Drury S.S.
        • Theall K.P.
        • Keats B.J.
        • Scheeringa M.
        The role of the dopamine transporter (DAT) in the development of PTSD in preschool children.
        J Trauma Stress. 2009; 22: 534-539
        • Koenen K.C.
        • Nugent N.R.
        • Amstadter A.B.
        Gene-environment interaction in posttraumatic stress disorder: review, strategy and new directions for future research.
        Eur Arch Psychiatry Clin Neurosci. 2008; 258: 82-96
        • Koenen K.C.
        • Amstadter A.B.
        • Nugent N.R.
        Gene-environment interaction in posttraumatic stress disorder: An update.
        J Trauma Stress. 2009; 22: 416-426
        • Bremner J.D.
        • Elzinga B.
        • Schmahl C.
        • Vermetten E.
        Structural and functional plasticity of the human brain in posttraumatic stress disorder.
        Prog Brain Res. 2008; 167: 171-186
        • Shin L.M.
        • Liberzon I.
        The neurocircuitry of fear, stress, and anxiety disorders.
        Neuropsychopharmacology. 2010; 35: 169-191
        • Bremner J.D.
        • Staib L.H.
        • Kaloupek D.
        • Southwick S.M.
        • Soufer R.
        • Charney D.S.
        Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study.
        Biol Psychiatry. 1999; 45: 806-816
        • Shin L.M.
        • Wright C.I.
        • Cannistraro P.A.
        • Wedig M.M.
        • McMullin K.
        • Martis B.
        • et al.
        A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder.
        Arch Gen Psychiatry. 2005; 62: 273-281
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Vogt B.A.
        • Pandya D.N.
        Cingulate cortex of the rhesus monkey: II.
        J Comp Neurol. 1987; 262: 271-289
        • Vogt B.A.
        • Rosene D.L.
        • Pandya D.N.
        Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey.
        Science. 1979; 204: 205-207
        • Schuff N.
        • Neylan T.C.
        • Fox-Bosetti S.
        • Lenoci M.
        • Samuelson K.W.
        • Studholme C.
        • et al.
        Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder.
        Psychiatry Res. 2008; 162: 147-157
        • Woodward S.H.
        • Kaloupek D.G.
        • Streeter C.C.
        • Martinez C.
        • Schaer M.
        • Eliez S.
        Decreased anterior cingulate volume in combat-related PTSD.
        Biol Psychiatry. 2006; 59: 582-587
        • Yamasue H.
        • Kasai K.
        • Iwanami A.
        • Ohtani T.
        • Yamada H.
        • Abe O.
        • et al.
        Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism.
        Proc Natl Acad Sci USA. 2003; 100: 9039-9043
        • Kasai K.
        • Yamasue H.
        • Gilbertson M.W.
        • Shenton M.E.
        • Rauch S.L.
        • Pitman R.K.
        Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder.
        Biol Psychiatry. 2008; 63: 550-556
        • Gaspar P.
        • Berger B.
        • Febvret A.
        • Vigny A.
        • Henry J.P.
        Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase.
        J Comp Neurol. 1989; 279: 249-271
        • Woodward N.D.
        • Zald D.H.
        • Ding Z.
        • Riccardi P.
        • Ansari M.S.
        • Baldwin R.M.
        • et al.
        Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.
        Neuroimage. 2009; 46: 31-38
        • Lidow M.S.
        • Goldman-Rakic P.S.
        • Gallager D.W.
        • Rakic P.
        Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390.
        Neuroscience. 1991; 40: 657-671
        • Goldman-Rakic P.S.
        The “psychic” neuron of the cerebral cortex.
        Ann N Y Acad Sci. 1999; 868: 13-26
        • Meyer-Lindenberg A.
        • Nichols T.
        • Callicott J.H.
        • Ding J.
        • Kolachana B.
        • Buckholtz J.
        • et al.
        Impact of complex genetic variation in COMT on human brain function.
        Mol Psychiatry. 2006; 11 (797): 867-877
        • Tunbridge E.M.
        • Bannerman D.M.
        • Sharp T.
        • Harrison P.J.
        Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex.
        J Neurosci. 2004; 24: 5331-5335
        • Karoum F.
        • Chrapusta S.J.
        • Egan M.F.
        3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: Reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model.
        J Neurochem. 1994; 63: 972-979
        • Yavich L.
        • Forsberg M.M.
        • Karayiorgou M.
        • Gogos J.A.
        • Mannisto P.T.
        Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum.
        J Neurosci. 2007; 27: 10196-10209
        • Chen J.
        • Lipska B.K.
        • Halim N.
        • Ma Q.D.
        • Matsumoto M.
        • Melhem S.
        • et al.
        Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain.
        Am J Hum Genet. 2004; 75: 807-821
        • Dickinson D.
        • Elvevag B.
        Genes, cognition and brain through a COMT lens.
        Neuroscience. 2009; 164: 72-87
        • Mier D.
        • Kirsch P.
        • Meyer-Lindenberg A.
        Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis.
        Mol Psychiatry. 2010; 15: 918-927
        • McIntosh A.M.
        • Baig B.J.
        • Hall J.
        • Job D.
        • Whalley H.C.
        • Lymer G.K.
        • et al.
        Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis.
        Biol Psychiatry. 2007; 61: 1127-1134
        • Ohnishi T.
        • Hashimoto R.
        • Mori T.
        • Nemoto K.
        • Moriguchi Y.
        • Iida H.
        • et al.
        The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia.
        Brain. 2006; 129: 399-410
        • Stein D.J.
        • Newman T.K.
        • Savitz J.
        • Ramesar R.
        Warriors versus worriers: the role of COMT gene variants.
        CNS Spectr. 2006; 11: 745-748
        • Kolassa I.T.
        • Kolassa S.
        • Ertl V.
        • Papassotiropoulos A.
        • De Quervain D.J.
        The risk of posttraumatic stress disorder after trauma depends on traumatic load and the catechol-o-methyltransferase Val(158)Met polymorphism.
        Biol Psychiatry. 2010; 67: 304-308
        • Amstadter A.B.
        • Nugent N.R.
        • Koenen K.C.
        • Ruggiero K.J.
        • Acierno R.
        • Galea S.
        • et al.
        Association between COMT, PTSD, and increased smoking following hurricane exposure in an epidemiologic sample.
        Psychiatry. 2009; 72: 360-369
        • Blake D.D.
        • Weathers F.W.
        • Nagy L.M.
        • Kaloupek D.G.
        • Charney D.S.
        • Keane T.M.
        Clinician-Administered PTSD Scale for DSM-IV: Current and Lifetime Version.
        Behavioral Science Division, Boston VA Medical Center/Neurosciences Division, West Haven VA Medical Center, Boston, MA, West Haven, CT1997
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for the DSM-IV Axis-I Disorders.
        Biometrics Research Department, New York State Psychiatric Institute, New York1995
        • Keane T.M.
        • Fairbank J.A.
        • Caddell J.M.
        • Zimering R.T.
        • Taylor K.L.
        • Mora C.A.
        Clinical evaluation of a measure to assess combat exposure.
        Psychol Assess. 1989; 1: 53-55
        • Gray M.J.
        • Litz B.
        • Hsu J.L.
        • Lombardo T.W.
        The psychometric properties of the Life Events Checklist.
        Assessment. 2004; 11: 330-341
        • Keane T.M.
        • Caddell J.M.
        • Taylor K.L.
        Mississippi Scale for Combat-Related Posttraumatic Stress Disorder: three studies in reliability and validity.
        J Consult Clin Psychol. 1988; 56: 85-90
        • Beck A.T.
        • Ward C.H.
        • Mendelson M.
        • Mock J.
        • Erbaugh J.
        An inventory for measuring depression.
        Arch Gen Psychiatry. 1961; 4: 561-571
        • Selzer M.L.
        The Michigan alcoholism screening test: the quest for a new diagnostic instrument.
        Am J Psychiatry. 1971; 127: 1653-1658
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis.
        Neuroimage. 1999; 9: 179-194
        • Fischl B.
        • Sereno M.I.
        • Tootell R.B.
        • Dale A.M.
        High-resolution intersubject averaging and a coordinate system for the cortical surface.
        Hum Brain Mapp. 1999; 8: 272-284
        • Han X.
        • Jovicich J.
        • Salat D.
        • van der Kouwe A.
        • Quinn B.
        • Czanner S.
        • et al.
        Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer.
        Neuroimage. 2006; 32: 180-194
        • Dickerson B.C.
        • Fenstermacher E.
        • Salat D.H.
        • Wolk D.A.
        • Maguire R.P.
        • Desikan R.
        • et al.
        Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths.
        Neuroimage. 2008; 39: 10-18
        • Desikan R.S.
        • Segonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Palmatier M.A.
        • Kang A.M.
        • Kidd K.K.
        Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles.
        Biol Psychiatry. 1999; 46: 557-567
        • Rauch S.L.
        • Shin L.M.
        • Segal E.
        • Pitman R.K.
        • Carson M.A.
        • McMullin K.
        • et al.
        Selectively reduced regional cortical volumes in post-traumatic stress disorder.
        Neuroreport. 2003; 14: 913-916
        • Perez-Cruz C.
        • Simon M.
        • Czeh B.
        • Flugge G.
        • Fuchs E.
        Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity- and stress-induced changes.
        Eur J Neurosci. 2009; 29: 738-747
        • Qiu H.
        • Meyer B.
        • Wang Y.
        • Woll C.
        Ionization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials.
        Phys Rev Lett. 2008; 101: 236401
        • Thiel C.M.
        • Schwarting R.K.
        Dopaminergic lateralisation in the forebrain: relations to behavioural asymmetries and anxiety in male Wistar rats.
        Neuropsychobiology. 2001; 43: 192-199
        • Robinson T.E.
        • Kolb B.
        Structural plasticity associated with exposure to drugs of abuse.
        Neuropharmacology. 2004; 47: 33-46
        • Sullivan R.M.
        Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine.
        Stress. 2004; 7: 131-143
        • Czeh B.
        • Perez-Cruz C.
        • Fuchs E.
        • Flugge G.
        Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter?.
        Behav Brain Res. 2008; 190: 1-13

      Linked Article