Advertisement

Proteomics and Metabolomics Analysis of a Trait Anxiety Mouse Model Reveals Divergent Mitochondrial Pathways

      Background

      Although anxiety disorders are the most prevalent psychiatric disorders, no molecular biomarkers exist for their premorbid diagnosis, accurate patient subcategorization, or treatment efficacy prediction. To unravel the neurobiological underpinnings and identify candidate biomarkers and affected pathways for anxiety disorders, we interrogated the mouse model of high anxiety-related behavior (HAB), normal anxiety-related behavior (NAB), and low anxiety-related behavior (LAB) employing a quantitative proteomics and metabolomics discovery approach.

      Methods

      We compared the cingulate cortex synaptosome proteomes of HAB and LAB mice by in vivo 15N metabolic labeling and mass spectrometry and quantified the cingulate cortex metabolomes of HAB/NAB/LAB mice. The combined data sets were used to identify divergent protein and metabolite networks by in silico pathway analysis. Selected differentially expressed proteins and affected pathways were validated with immunochemical and enzymatic assays.

      Results

      Altered levels of up to 300 proteins and metabolites were found between HAB and LAB mice. Our data reveal alterations in energy metabolism, mitochondrial import and transport, oxidative stress, and neurotransmission, implicating a previously nonhighlighted role of mitochondria in modulating anxiety-related behavior.

      Conclusions

      Our results offer insights toward a molecular network of anxiety pathophysiology with a focus on mitochondrial contribution and provide the basis for pinpointing affected pathways in anxiety-related behavior.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        The Global Burden of Disease: 2004 Update.
        WHO Press, Geneva2008
        • Kessler R.C.
        • Demler O.
        • Frank R.G.
        • Olfson M.
        • Pincus H.A.
        • Walters E.E.
        • et al.
        Prevalence and treatment of mental disorders, 1990 to 2003.
        N Engl J Med. 2005; 352: 2515-2523
        • Krömer S.A.
        • Kessler M.S.
        • Milfay D.
        • Birg I.N.
        • Bunck M.
        • Czibere L.
        • et al.
        Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety.
        J Neurosci. 2005; 25: 4375-4384
        • Landgraf R.
        • Kessler M.S.
        • Bunck M.
        • Murgatroyd C.
        • Spengler D.
        • Zimbelmann M.
        • et al.
        Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I.
        Neurosci Biobehav Rev. 2007; 31: 89-102
        • Plomin R.
        • Haworth C.M.
        • Davis O.S.
        Common disorders are quantitative traits.
        Nat Rev Genet. 2009; 10: 872-878
        • Gardner A.
        • Boles R.G.
        Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders.
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 730-743
        • Hindmarch I.
        Beyond the monoamine hypothesis: Mechanisms, molecules and methods.
        Eur Psychiatry. 2002; 17: 294-299
        • Filiou M.D.
        • Turck C.W.
        • Martins de Souza D.
        Quantitative proteomics for investigating psychiatric disorders.
        Proteomics Clin Appl. 2011; 5: 38-49
        • Asami T.
        • Hayano F.
        • Nakamura M.
        • Yamasue H.
        • Uehara K.
        • Otsuka T.
        • et al.
        Anterior cingulate cortex volume reduction in patients with panic disorder.
        Psychiatry Clin Neurosci. 2008; 62: 322-330
        • Drevets W.C.
        • Savitz J.
        The subgenual anterior cingulate cortex in mood disorders.
        CNS Spectr. 2008; 13: 663-681
        • Muigg P.
        • Hetzenauer A.
        • Hauer G.
        • Hauschild M.
        • Gaburro S.
        • Frank E.
        • et al.
        Impaired extinction of learned fear in rats selectively bred for high anxiety-evidence of altered neuronal processing in prefrontal-amygdala pathways.
        Eur J Neurosci. 2008; 28: 2299-2309
        • Frank E.
        • Kessler M.S.
        • Filiou M.D.
        • Zhang Y.
        • Maccarrone G.
        • Reckow S.
        • et al.
        Stable isotope metabolic labeling with a novel 15N-enriched bacteria diet for improved proteomic analyses of mouse models for psychopathologies.
        PLoS One. 2009; 4: e7821
        • Paxinos G.
        • Franklin K.
        The Mouse Brain in Stereotaxic Coordinates.
        2nd edn. Academic Press, San Diego2001
        • Haegler K.
        • Mueller N.S.
        • Maccarrone G.
        • Hunyadi-Gulyas E.
        • Webhofer C.
        • Filiou M.D.
        • et al.
        QuantiSpec-Quantitative mass spectrometry data analysis of 15N-metabolically labeled proteins.
        J Proteomics. 2009; 71: 601-608
        • Filiou M.D.
        • Bisle B.
        • Reckow S.
        • Teplytska L.
        • Maccarrone G.
        • Turck C.W.
        Profiling of mouse synaptosome proteome and phosphoproteome by IEF.
        Electrophoresis. 2010; 31: 1294-1301
        • Tabb D.L.
        • McDonald W.H.
        • Yates 3rd, J.R.
        DTASelect and Contrast: Tools for assembling and comparing protein identifications from shotgun proteomics.
        J Proteome Res. 2002; 1: 21-26
        • Pan C.
        • Kora G.
        • McDonald W.H.
        • Tabb D.L.
        • VerBerkmoes N.C.
        • Hurst G.B.
        • et al.
        ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation.
        Anal Chem. 2006; 78: 7121-7131
        • Zou D.B.
        • Tolstikov V.M.
        Pattern recognition and pathway analysis with genetic algorithms in mass spectrometry based metabolomics.
        Algorithms. 2009; 2: 638-666
        • Díaz-Uriarte R.
        • Alvares de Andrés S.
        Gene selection and classification of microarray data using random forest.
        BMC Bioinformatics. 2006; 7: 3
        • Kanehisa M.
        • Goto S.
        KEGG: Kyoto encyclopedia of genes and genomes.
        Nucleic Acids Res. 2000; 28: 27-30
        • Ditzen C.
        • Jastorff A.M.
        • Kessler M.S.
        • Bunck M.
        • Teplytska L.
        • Erhardt A.
        • et al.
        Protein biomarkers in a mouse model of extremes in trait anxiety.
        Mol Cell Proteomics. 2006; 5: 1914-1920
        • Ditzen C.
        • Varadarajulu J.
        • Czibere L.
        • Gonik M.
        • Targosz B.S.
        • Hambsch B.
        • et al.
        Proteomic-based genotyping in a mouse model of trait anxiety exposes disease-relevant pathways.
        Mol Psychiatry. 2010; 15: 702-711
        • Sies H.
        • Stahl W.
        • Sundquist A.R.
        Antioxidant functions of vitamins.
        Ann N Y Acad Sci. 1992; 669: 7-20
        • Agus D.B.
        • Gambhir S.S.
        • Pardridge W.M.
        • Spielholz C.
        • Baselga J.
        • Vera J.C.
        • et al.
        Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.
        J Clin Invest. 1997; 100: 2842-2848
        • Neupert W.
        Protein import into mitochondria.
        Annu Rev Biochem. 1997; 66: 863-917
        • Armstrong L.C.
        • Saenz A.J.
        • Bornstein P.
        Metaxin 1 interacts with metaxin 2, a novel related protein associated with the mammalian mitochondrial outer membrane.
        J Cell Biochem. 1999; 74: 11-22
        • De Pinto V.D.
        • Palmieri F.
        Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC).
        J Bioenerg Biomembr. 1992; 24: 21-26
        • Palmieri F.
        The mitochondrial transporter family (SLC25): Physiological and pathological implications.
        Pflugers Arch. 2004; 447: 689-709
        • Huttlin E.L.
        • Chen X.
        • Barrett-Wilt G.A.
        • Hegeman A.D.
        • Halberg R.B.
        • Harms A.C.
        • et al.
        Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution.
        Proc Natl Acad Sci U S A. 2009; 106: 17235-17240
        • Fleming M.D.
        • Campagna D.R.
        • Haslett J.N.
        • Trenor 3rd, C.C.
        • Andrews N.C.
        A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of flexed-tail (f/f) mice.
        Genes Dev. 2001; 15: 652-657
        • Beard J.L.
        • Erikson K.M.
        • Jones B.C.
        Neurobehavioral analysis of developmental iron deficiency in rats.
        Behav Brain Res. 2002; 134: 517-524
        • Eseh R.
        • Zimmerberg B.
        Age-dependent effects of gestational and lactational iron deficiency on anxiety behavior in rats.
        Behav Brain Res. 2005; 164: 214-221
        • Palminiello S.
        • Kida E.
        • Kaur K.
        • Walus M.
        • Wisniewski K.E.
        • Wierzba-Bobrowicz T.
        • et al.
        Increased levels of carbonic anhydrase II in the developing Down syndrome brain.
        Brain Res. 2008; 1190: 193-205
        • Hayes S.G.
        Acetazolamide in bipolar affective disorders.
        Ann Clin Psychiatry. 1994; 6: 91-98
        • Inoue H.
        • Hazama H.
        • Hamazoe K.
        • Ichikawa M.
        • Omura F.
        • Fukuma E.
        • et al.
        Antipsychotic and prophylactic effects of acetazolamide (Diamox) on atypical psychosis.
        Folia Psychiatr Neurol Jpn. 1984; 38: 425-436
        • Zhang H.Q.
        • Berg J.S.
        • Li Z.L.
        • Wang Y.L.
        • Lang P.
        • Sousa A.D.
        • et al.
        Myosin-X provides a motor-based link between integrins and the cytoskeleton.
        Nat Cell Biol. 2004; 6: 523-531
        • Zhu X.J.
        • Wang C.Z.
        • Dai P.G.
        • Xie Y.
        • Song N.N.
        • Liu Y.
        • et al.
        Myosin X regulates netrin receptors and functions in axonal path-finding.
        Nat Cell Biol. 2007; 9: 184-192
        • Blundell J.
        • Tabuchi K.
        • Bolliger M.F.
        • Blaiss C.A.
        • Brose N.
        • Liu X.
        • et al.
        Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2.
        Genes Brain Behav. 2009; 8: 114-126
        • Schmalzigaug R.
        • Rodriguiz R.M.
        • Phillips L.E.
        • Davidson C.E.
        • Wetsel W.C.
        • Premont R.T.
        Anxiety-like behaviors in mice lacking GIT2.
        Neurosci Lett. 2009; 451: 156-161
        • Behl A.
        • Swami G.
        • Sircar S.S.
        • Bhatia M.S.
        • Banerjee B.D.
        Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder.
        Neuropsychobiology. 2010; 61: 210-214
        • Kuloglu M.
        • Atmaca M.
        • Tezcan E.
        • Gecici O.
        • Tunckol H.
        • Ustundag B.
        Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder.
        Neuropsychobiology. 2002; 46: 27-32
        • Kuloglu M.
        • Atmaca M.
        • Tezcan E.
        • Ustundag B.
        • Bulut S.
        Antioxidant enzyme and malondialdehyde levels in patients with panic disorder.
        Neuropsychobiology. 2002; 46: 186-189
        • Hovatta I.
        • Tennant R.S.
        • Helton R.
        • Marr R.A.
        • Singer O.
        • Redwine J.M.
        • et al.
        Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice.
        Nature. 2005; 438: 662-666
        • Rammal H.
        • Bouayed J.
        • Younos C.
        • Soulimani R.
        Evidence that oxidative stress is linked to anxiety-related behaviour in mice.
        Brain Behav Immun. 2008; 22: 1156-1159
        • Szego E.M.
        • Janaky T.
        • Szabo Z.
        • Csorba A.
        • Kompagne H.
        • Wuller G.
        • et al.
        A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome.
        Eur Neuropsychopharmacol. 2010; 20: 96-111
        • Stefanova N.A.
        • Fursova A.
        • Kolosova N.G.
        Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats.
        J Alzheimers Dis. 2010; 21: 479-491
        • Chen Q.
        • Camara A.K.
        • Stowe D.F.
        • Hoppel C.L.
        • Lesnefsky E.J.
        Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion.
        Am J Physiol Cell Physiol. 2007; 292: C137-C147
        • Huber R.
        • Spiegel T.
        • Buchner M.
        • Riepe M.W.
        Graded reoxygenation with chemical inhibition of oxidative phosphorylation improves posthypoxic recovery in murine hippocampal slices.
        J Neurosci Res. 2004; 75: 441-449
        • Riepe M.W.
        • Esclaire F.
        • Kasischke K.
        • Schreiber S.
        • Nakase H.
        • Kempski O.
        • et al.
        Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: ”Chemical preconditioning”.
        J Cereb Blood Flow Metab. 1997; 17: 257-264
        • Hunter A.J.
        • Hendrikse A.S.
        • Renan M.J.
        Can radiation-induced apoptosis be modulated by inhibitors of energy metabolism?.
        Int J Radiat Biol. 2007; 83: 105-114
        • Jeong D.W.
        • Kim T.S.
        • Cho I.T.
        • Kim I.Y.
        Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria.
        Biochem Biophys Res Commun. 2004; 313: 984-991
        • Vaughn A.E.
        • Deshmukh M.
        Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c.
        Nat Cell Biol. 2008; 10: 1477-1483
        • Gohil V.M.
        • Sheth S.A.
        • Nilsson R.
        • Wojtovich A.P.
        • Lee J.H.
        • Perocchi F.
        • et al.
        Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis.
        Nat Biotechnol. 2010; 28: 249-255
        • Kroemer G.
        • Galluzzi L.
        • Brenner C.
        Mitochondrial membrane permeabilization in cell death.
        Physiol Rev. 2007; 87: 99-163
        • Luvisetto S.
        • Basso E.
        • Petronilli V.
        • Bernardi P.
        • Forte M.
        Enhancement of anxiety, facilitation of avoidance behavior and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D.
        Neuroscience. 2008; 155: 585-596
        • Kageyama G.H.
        • Wong-Riley M.T.
        Histochemical localization of cytochrome oxidase in the hippocampus: Correlation with specific neuronal types and afferent pathways.
        Neuroscience. 1982; 7: 2337-2361
        • Mattson M.P.
        • Partin J.
        Evidence for mitochondrial control of neuronal polarity.
        J Neurosci Res. 1999; 56: 8-20
        • Billups B.
        • Forsythe I.D.
        Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
        J Neurosci. 2002; 22: 5840-5847
        • Kann O.
        • Kovacs R.
        • Heinemann U.
        Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures.
        J Neurophysiol. 2003; 90: 613-621
        • Vanden Berghe P.
        • Kenyon J.L.
        • Smith T.K.
        Mitochondrial Ca2+ uptake regulates the excitability of myenteric neurons.
        J Neurosci. 2002; 22: 6962-6971
        • Williams J.M.
        • Thompson V.L.
        • Mason-Parker S.E.
        • Abraham W.C.
        • Tate W.P.
        Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus.
        Brain Res Mol Brain Res. 1998; 60: 50-56
        • Calabresi P.
        • Gubellini P.
        • Picconi B.
        • Centonze D.
        • Pisani A.
        • Bonsi P.
        • et al.
        Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine.
        J Neurosci. 2001; 21: 5110-5120
        • McNaughton N.
        Cognitive dysfunction resulting from hippocampal hyperactivity--a possible cause of anxiety disorder?.
        Pharmacol Biochem Behav. 1997; 56: 603-611
        • Ben-Shachar D.
        • Laifenfeld D.
        Mitochondria, synaptic plasticity, and schizophrenia.
        Int Rev Neurobiol. 2004; 59: 273-296
        • Kato T.
        The role of mitochondrial dysfunction in bipolar disorder.
        Drug News Perspect. 2006; 19: 597-602
        • Stork C.
        • Renshaw P.F.
        Mitochondrial dysfunction in bipolar disorder: Evidence from magnetic resonance spectroscopy research.
        Mol Psychiatry. 2005; 10: 900-919
        • Einat H.
        • Yuan P.
        • Manji H.K.
        Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: Further support for the involvement of mitochondrial function in anxiety disorders.
        Behav Brain Res. 2005; 165: 172-180
        • Du J.
        • McEwen B.
        • Manji H.K.
        Glucocorticoid receptors modulate mitochondrial function: A novel mechanism for neuroprotection.
        Commun Integr Biol. 2009; 2: 350-352
        • Fulda S.
        • Galluzzi L.
        • Kroemer G.
        Targeting mitochondria for cancer therapy.
        Nat Rev Drug Discov. 2010; 9: 447-464
        • Armstrong J.S.
        Mitochondrial medicine: Pharmacological targeting of mitochondria in disease.
        Br J Pharmacol. 2007; 151: 1154-1165