Advertisement
Archival Report| Volume 70, ISSUE 9, P880-887, November 01, 2011

Download started.

Ok

Converging Evidence for an Association of ATP2B2 Allelic Variants with Autism in Male Subjects

      Background

      Autism is a severe developmental disorder, with strong genetic underpinnings. Previous genome-wide scans unveiled a linkage region spanning 3.5 Mb, located on human chromosome 3p25. This region encompasses the ATP2B2 gene, encoding the plasma membrane calcium-transporting ATPase 2 (PMCA2), which extrudes calcium (Ca2+) from the cytosol into the extracellular space. Multiple lines of evidence support excessive intracellular Ca2+ signaling in autism spectrum disorder (ASD), making ATP2B2 an attractive candidate gene.

      Methods

      We performed a family-based association study in an exploratory sample of 277 autism genetic resource exchange families and in a replication sample including 406 families primarily recruited in Italy.

      Results

      Several markers were significantly associated with ASD in the exploratory sample, and the same risk alleles at single nucleotide polymorphisms rs3774180, rs2278556, and rs241509 were found associated with ASD in the replication sample after correction for multiple testing. In both samples, the association was present in male subjects only. Markers associated with autism are all comprised within a single block of strong linkage disequilibrium spanning several exons, and the “risk” allele seems to follow a recessive mode of transmission.

      Conclusions

      These results provide converging evidence for an association between ATP2B2 gene variants and autism in male subjects, spurring interest into the identification of functional variants, most likely involved in the homeostasis of Ca2+ signaling. Additional support comes from a recent genome-wide association study by the Autism Genome Project, which highlights the same linkage disequilibrium region of the gene.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. American Psychiatric Publishing, Washington, DC1994
        • Filipek P.A.
        • Accardo P.J.
        • Baranek G.T.
        • Cook Jr, E.H.
        • Dawson G.
        • Gordon B.
        • et al.
        The screening and diagnosis of autistic spectrum disorders.
        J Autism Dev Disord. 1999; 29: 439-484
        • Bailey A.
        • Le Couteur A.
        • Gottesman I.
        • Bolton P.
        • Simonoff E.
        • Yuzda E.
        • Rutter M.
        Autism as a strongly genetic disorder: Evidence from a British twin study.
        Psychol Med. 1995; 25: 63-77
        • Muhle R.
        • Trentacoste S.V.
        • Rapin I.
        The genetics of autism.
        Pediatrics. 2004; 113: e472-e486
        • Steffenburg S.
        • Gillberg C.
        • Hellgren L.
        • Andersson L.
        • Gillberg I.C.
        • Jakobsson G.
        • Bohman M.
        A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden.
        J Child Psychol Psychiatry. 1989; 30: 405-416
        • Anney R.
        • Klei L.
        • Pinto D.
        • Regan R.
        • Conroy J.
        • Magalhaes T.R.
        • et al.
        A genome-wide scan for common alleles affecting risk for autism.
        Hum Mol Genet. 2010; 19: 4072-4082
        • Wang K.
        • Zhang H.
        • Ma D.
        • Bucan M.
        • Glessner J.T.
        • Abrahams B.S.
        • et al.
        Common genetic variants on 5p14.1 associate with autism spectrum disorders.
        Nature. 2009; 459: 528-533
        • Weiss L.A.
        • Arking D.E.
        • Daly M.J.
        • Chakravarti A.
        • Gene Discovery Project of Johns Hopkins & the Autism Consortium
        A genome-wide linkage and association scan reveals novel loci for autism.
        Nature. 2009; 461: 802-808
        • Buxbaum J.D.
        Multiple rare variants in the etiology of autism spectrum disorders.
        Dialogues Clin Neurosci. 2009; 11: 35-43
        • Yang M.S.
        • Gill M.
        A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence.
        Int J Dev Neurosci. 2007; 25: 69-85
        • Alarcon M.
        • Abrahams B.S.
        • Stone J.L.
        • Duvall J.A.
        • Perederiy J.V.
        • Bomar J.M.
        • et al.
        Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene.
        Am J Hum Genet. 2008; 82: 150-159
        • Arking D.E.
        • Cutler D.J.
        • Brune C.W.
        • Teslovich T.M.
        • West K.
        • Ikeda M.
        • et al.
        A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism.
        Am J Hum Genet. 2008; 82: 160-164
        • Wu S.
        • Jia M.
        • Ruan Y.
        • Liu J.
        • Guo Y.
        • Shuang M.
        • et al.
        Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population.
        Biol Psychiatry. 2005; 58: 74-77
        • Campbell D.B.
        • Sutcliffe J.S.
        • Ebert P.J.
        • Militerni R.
        • Bravaccio C.
        • Trillo S.
        • et al.
        A genetic variant that disrupts MET transcription is associated with autism.
        Proc Natl Acad Sci U S A. 2006; 103: 16834-16839
        • Philippi A.
        • Roschmann E.
        • Tores F.
        • Lindenbaum P.
        • Benajou A.
        • Germain-Leclerc L.
        • et al.
        Haplotypes in the gene encoding protein kinase C-beta (PRKCB1) on chromosome 16 are associated with autism.
        Mol Psychiatry. 2005; 10: 950-960
        • Conroy J.
        • Cochrane L.
        • Anney R.J.
        • Sutcliffe J.S.
        • Carthy P.
        • Dunlop A.
        • et al.
        Fine mapping and association studies in a candidate region for autism on chromosome 2q31-q32.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 535-544
        • McCauley J.L.
        • Li C.
        • Jiang L.
        • Olson L.M.
        • Crockett G.
        • Gainer K.
        • et al.
        Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates.
        BMC Med Genet. 2005; 6: 1
        • Shao Y.
        • Wolpert C.M.
        • Raiford K.L.
        • Menold M.M.
        • Donnelly S.L.
        • Ravan S.A.
        • et al.
        Genomic screen and follow-up analysis for autistic disorder.
        Am J Med Genet. 2002; 114: 99-105
        • Lauritsen M.B.
        • Als T.D.
        • Dahl H.A.
        • Flint T.J.
        • Wang A.G.
        • Vang M.
        • et al.
        A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands.
        Mol Psychiatry. 2006; 11: 37-46
        • Geschwind D.H.
        • Sowinski J.
        • Lord C.
        • Iversen P.
        • Shestack J.
        • Jones P.
        • et al.
        The autism genetic resource exchange: A resource for the study of autism and related neuropsychiatric conditions.
        Am J Hum Genet. 2001; 69: 463-466
        • Rutter M.
        • Le Couter A.
        • Lord C.
        ADI-R, Autism Diagnostic Interview—Revised [Italian version by Faggioli R, Saccani M, Persico AM, Tancredi R, Parrini B, Igliozzi R, editors (2005). Florence: Organizzazioni Speciali].
        Western Psychological Services, Los Angeles2003
        • Brooks P.
        • Marcaillou C.
        • Vanpeene M.
        • Saraiva J.P.
        • Stockholm D.
        • Francke S.
        • et al.
        Robust physical methods that enrich genomic regions identical by descent for linkage studies: Confirmation of a locus for osteogenesis imperfecta.
        BMC Genet. 2009; 10: 16
        • Dumont R.A.
        • Lins U.
        • Filoteo A.G.
        • Penniston J.T.
        • Kachar B.
        • Gillespie P.G.
        Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles.
        J Neurosci. 2001; 21: 5066-5078
        • Burette A.
        • Rockwood J.M.
        • Strehler E.E.
        • Weinberg R.J.
        Isoform-specific distribution of the plasma membrane Ca2+ ATPase in the rat brain.
        J Comp Neurol. 2003; 467: 464-476
        • Krizaj D.
        • Demarco S.J.
        • Johnson J.
        • Strehler E.E.
        • Copenhagen D.R.
        Cell-specific expression of plasma membrane calcium ATPase isoforms in retinal neurons.
        J Comp Neurol. 2002; 451: 1-21
        • Silverstein R.S.
        • Tempel B.L.
        Atp2b2, encoding plasma membrane Ca2+-ATPase type 2, (PMCA2) exhibits tissue-specific first exon usage in hair cells, neurons, and mammary glands of mice.
        Neuroscience. 2006; 141: 245-257
        • Brini M.
        • Coletto L.
        • Pierobon N.
        • Kraev N.
        • Guerini D.
        • Carafoli E.
        A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells.
        J Biol Chem. 2003; 278: 24500-24508
        • Caride A.J.
        • Filoteo A.G.
        • Penheiter A.R.
        • Paszty K.
        • Enyedi A.
        • Penniston J.T.
        Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: Fast pumps reside in fast cells.
        Cell Calcium. 2001; 30: 49-57
        • Krey J.F.
        • Dolmetsch R.E.
        Molecular mechanisms of autism: A possible role for Ca2+ signaling.
        Curr Opin Neurobiol. 2007; 17: 112-119
        • Palmieri L.
        • Papaleo V.
        • Porcelli V.
        • Scarcia P.
        • Gaita L.
        • Sacco R.
        • et al.
        Altered calcium homeostasis in autism-spectrum disorders: Evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1.
        Mol Psychiatry. 2010; 15: 38-52
        • Bauman M.L.
        • Kemper T.L.
        Neuroanatomic observations of the brain in autism: A review and future directions.
        Int J Dev Neurosci. 2005; 23: 183-187
        • Ficarella R.
        • Di Leva F.
        • Bortolozzi M.
        • Ortolano S.
        • Donaudy F.
        • Petrillo M.
        • et al.
        A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness.
        Proc Natl Acad Sci U S A. 2007; 104: 1516-1521
        • Bortolozzi M.
        • Brini M.
        • Parkinson N.
        • Crispino G.
        • Scimemi P.
        • De Siati R.D.
        • et al.
        The novel PMCA2 pump mutation Tommy impairs cytosolic calcium clearance in hair cells and links to deafness in mice.
        J Biol Chem. 2010; 285: 37693-37703
        • Schultz J.M.
        • Yang Y.
        • Caride A.J.
        • Filoteo A.G.
        • Penheiter A.R.
        • Lagziel A.
        • et al.
        Modification of human hearing loss by plasma-membrane calcium pump PMCA2.
        N Engl J Med. 2005; 352: 1557-1564
        • Rosenhall U.
        • Nordin V.
        • Brantberg K.
        • Gillberg C.
        Autism and auditory brain stem responses.
        Ear Hear. 2003; 24: 206-214
        • Rosenhall U.
        • Nordin V.
        • Sandstrom M.
        • Ahlsen G.
        • Gillberg C.
        Autism and hearing loss.
        J Autism Dev Disord. 1999; 29: 349-357
        • Hu V.W.
        • Nguyen A.
        • Kim K.S.
        • Steinberg M.E.
        • Sarachana T.
        • Scully M.A.
        • et al.
        Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: Altered pathways in neuronal development and steroid biosynthesis.
        PLoS ONE. 2009; 4: e5775
        • Ikeda M.
        • Tomita Y.
        • Mouri A.
        • Koga M.
        • Okochi T.
        • Yoshimura R.
        • et al.
        Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: Integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches.
        Biol Psychiatry. 2009; 67: 263-269
        • McDougle C.J.
        • Stigler K.A.
        • Erickson C.A.
        • Posey D.J.
        Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders.
        J Clin Psychiatry. 2008; 69: 15-20
        • Fombonne E.
        Epidemiology of pervasive developmental disorders.
        Pediatr Res. 2009; 65: 591-598
        • Stone J.L.
        • Merriman B.
        • Cantor R.M.
        • Yonan A.L.
        • Gilliam T.C.
        • Geschwind D.H.
        • Nelson S.F.
        Evidence for sex-specific risk alleles in autism spectrum disorder.
        Am J Hum Genet. 2004; 75: 1117-1123
        • Lord C.
        • Rutter M.
        • DiLavore P.C.
        • Risi S.
        ADOS, Autism Diagnostic Observation Schedule [Italian version by Tancredi R, Saccani M, Persico AM, Parrini B, Igliozzi R, Faggioli R, editors (2005). Florence: Organizzazioni Speciali).
        Western Psychological Services, Los Angeles2002
        • Sacco R.
        • Curatolo P.
        • Manzi B.
        • Militerni R.
        • Bravaccio C.
        • Frolli A.
        • et al.
        Principal pathogenetic components and biological endophenotypes in autism spectrum disorders.
        Autism Res. 2010; 3: 237-252
        • Wigginton J.E.
        • Cutler D.J.
        • Abecasis G.R.
        A note on exact tests of Hardy–Weinberg equilibrium.
        Am J Hum Genet. 2005; 76: 887-893
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Barrett J.C.
        • Fry B.
        • Maller J.
        • Daly M.J.
        Haploview: Analysis and visualization of LD and haplotype maps.
        Bioinformatics. 2005; 21: 263-265
        • Laird N.M.
        • Horvath S.
        • Xu X.
        Implementing a unified approach to family-based tests of association.
        Genet Epidemiol. 2000; 19: S36-S42
        • Rabinowitz D.
        • Laird N.
        A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information.
        Hum Hered. 2000; 50: 211-223
        • Ewens W.J.
        • Spielman R.S.
        The transmission/disequilibrium test: History, subdivision, and admixture.
        Am J Hum Genet. 1995; 57: 455-464
        • Tsui H.W.
        • Inman R.D.
        • Paterson A.D.
        • Reveille J.D.
        • Tsui F.W.
        ANKH variants associated with ankylosing spondylitis: Gender differences.
        Arthritis Res Ther. 2005; 7: R513-R525
        • Li J.
        • Ji L.
        Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix.
        Heredity. 2005; 95: 221-227
        • de Bakker P.I.
        • Ferreira M.A.
        • Jia X.
        • Neale B.M.
        • Raychaudhuri S.
        • Voight B.F.
        Practical aspects of imputation-driven meta-analysis of genome-wide association studies.
        Hum Mol Genet. 2008; 17: R122-R128
        • Carroll L.S.
        • Owen M.J.
        Genetic overlap between autism, schizophrenia and bipolar disorder.
        Genome Med. 2009; 1: 102
        • Crespi B.
        • Stead P.
        • Elliot M.
        Evolution in health and medicine Sackler colloquium: Comparative genomics of autism and schizophrenia.
        Proc Natl Acad Sci U S A. 2009; 107: 1736-1741
        • Pedersen P.
        • Carafoli E.
        Ion motive ATPases.
        Trends Biochem. 1987; 14: 146-150
        • Chicka M.C.
        • Strehler E.E.
        Alternative splicing of the first intracellular loop of plasma membrane Ca2+-ATPase isoform 2 alters its membrane targeting.
        J Biol Chem. 2003; 278: 18464-18470
        • Dodson H.C.
        • Charalabapoulou M.
        PMCA2 mutation causes structural changes in the auditory system in deafwaddler mice.
        J Neurocytol. 2001; 30: 281-292
        • Empson R.M.
        • Garside M.L.
        • Knopfel T.
        Plasma membrane Ca2+ ATPase 2 contributes to short-term synapse plasticity at the parallel fiber to Purkinje neuron synapse.
        J Neurosci. 2007; 27: 3753-3758
        • Garside M.L.
        • Turner P.R.
        • Austen B.
        • Strehler E.E.
        • Beesley P.W.
        • Empson R.M.
        Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum.
        Neuroscience. 2009; 162: 383-395
        • Kurnellas M.P.
        • Lee A.K.
        • Li H.
        • Deng L.
        • Ehrlich D.J.
        • Elkabes S.
        Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons.
        Mol Cell Neurosci. 2007; 34: 178-188
        • Fernandes D.
        • Zaidi A.
        • Bean J.
        • Hui D.
        • Michaelis M.L.
        RNA-induced silencing of the plasma membrane Ca2+-ATPase 2 in neuronal cells: Effects on Ca2+ homeostasis and cell viability.
        J Neurochem. 2007; 102: 454-465
        • Splawski I.
        • Timothy K.W.
        • Sharpe L.M.
        • Decher N.
        • Kumar P.
        • Bloise R.
        • et al.
        Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.
        Cell. 2004; 119: 19-31
        • Hope C.I.
        • Sharp D.M.
        • Hemara-Wahanui A.
        • Sissingh J.I.
        • Lundon P.
        • Mitchell E.A.
        • et al.
        Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2.
        Clin Experiment Ophthalmol. 2005; 33: 129-136
        • Laumonnier F.
        • Roger S.
        • Guerin P.
        • Molinari F.
        • M'Rad R.
        • Cahard D.
        • et al.
        Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation.
        Am J Psychiatry. 2006; 163: 1622-1629
        • Garbett K.
        • Ebert P.J.
        • Mitchell A.
        • Lintas C.
        • Manzi B.
        • Mirnics K.
        • Persico A.M.
        Immune transcriptome alterations in the temporal cortex of subjects with autism.
        Neurobiol Dis. 2008; 30: 303-311
        • Vargas D.L.
        • Nascimbene C.
        • Krishnan C.
        • Zimmerman A.W.
        • Pardo C.A.
        Neuroglial activation and neuroinflammation in the brain of patients with autism.
        Ann Neurol. 2005; 57: 67-81
        • Satrustegui J.
        • Pardo B.
        • Del Arco A.
        Mitochondrial transporters as novel targets for intracellular calcium signaling.
        Physiol Rev. 2007; 87: 29-67
        • Palmieri L.
        • Pardo B.
        • Lasorsa F.M.
        • del Arco A.
        • Kobayashi K.
        • Iijima M.
        • et al.
        Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria.
        EMBO J. 2001; 20: 5060-5069
        • Palmieri L.
        • Persico A.M.
        Mitochondrial dysfunction in autism spectrum disorders: Cause or effect?.
        Biochim Biophys Acta. 2010; 1797: 1130-1137
        • Saban M.R.
        • Nguyen N.B.
        • Hammond T.G.
        • Saban R.
        Gene expression profiling of mouse bladder inflammatory responses to LPS, substance P, and antigen-stimulation.
        Am J Pathol. 2002; 160: 2095-2110