Advertisement

Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder

  • Junran Zhang
    Affiliations
    Huaxi Magnetic Resonance Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
    Search for articles by this author
  • Jinhui Wang
    Affiliations
    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Qizhu Wu
    Affiliations
    Huaxi Magnetic Resonance Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
    Search for articles by this author
  • Weihong Kuang
    Affiliations
    Department of Psychiatry, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
    Search for articles by this author
  • Xiaoqi Huang
    Affiliations
    Huaxi Magnetic Resonance Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
    Search for articles by this author
  • Yong He
    Correspondence
    Address correspondence to Yong He, Ph.D., Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, No 19 Xinjiekouwai Street, Haidian District, Beijing, China 100875
    Affiliations
    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Qiyong Gong
    Affiliations
    Huaxi Magnetic Resonance Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
    Search for articles by this author

      Background

      Neuroimaging studies have shown that major depressive disorder (MDD) is accompanied by structural and functional abnormalities in specific brain regions and connections; yet, little is known about alterations of the topological organization of whole-brain networks in MDD patients.

      Methods

      Thirty drug-naive, first-episode MDD patients and 63 healthy control subjects underwent a resting-state functional magnetic resonance imaging scan. The whole-brain functional networks were constructed by thresholding partial correlation matrices of 90 brain regions, and their topological properties (e.g., small-world, efficiency, and nodal centrality) were analyzed using graph theory-based approaches. Nonparametric permutation tests were further used for group comparisons of topological metrics.

      Results

      Both the MDD and control groups showed small-world architecture in brain functional networks, suggesting a balance between functional segregation and integration. However, compared with control subjects, the MDD patients showed altered quantitative values in the global properties, characterized by lower path length and higher global efficiency, implying a shift toward randomization in their brain networks. The MDD patients exhibited increased nodal centralities, predominately in the caudate nucleus and default-mode regions, including the hippocampus, inferior parietal, medial frontal, and parietal regions, and reduced nodal centralities in the occipital, frontal (orbital part), and temporal regions. The altered nodal centralities in the left hippocampus and the left caudate nucleus were correlated with disease duration and severity.

      Conclusions

      These results suggest that depressive disorder is associated with disruptions in the topological organization of functional brain networks and that this disruption may contribute to disturbances in mood and cognition in MDD patients.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jia Z.
        • Huang X.
        • Wu Q.
        • Zhang T.
        • Lui S.
        • Zhang J.
        • et al.
        High-field magnetic resonance imaging of suicidality in patients with major depressive disorder.
        Am J Psychiatry. 2010; 167: 1381-1390
        • Smith G.S.
        • Kramer E.
        • Hermann C.
        • Ma Y.
        • Dhawan V.
        • Chaly T.
        • Eidelberg D.
        Serotonin modulation of cerebral glucose metabolism in depressed older adults.
        Biol Psychiatry. 2009; 66: 259-266
        • Lui S.
        • Parkes L.M.
        • Huang X.
        • Zou K.
        • Chan R.C.
        • Yang H.
        • et al.
        Depressive disorders: Focally altered cerebral perfusion measured with arterial spin-labeling MR imaging.
        Radiology. 2009; 251: 476-484
        • Gilbert A.M.
        • Prasad K.
        • Goradia D.
        • Nutche J.
        • Keshavan M.
        • Frank E.
        Grey matter volume reductions in the emotion network of patients with depression and coronary artery disease.
        Psychiatry Res. 2010; 181: 9-14
        • Mah L.
        • Zarate C.A.
        • Singh J.
        • Duan Y.F.
        • Luckenbaugh D.A.
        • Manji H.K.
        • Drevets W.C.
        Regional cerebral glucose metabolic abnormalities in bipolar II depression.
        Biol Psychiatry. 2007; 61: 765-775
        • Yao Z.
        • Wang L.
        • Lu Q.
        • Liu H.
        • Teng G.
        Regional homogeneity in depression and its relationship with separate depressive symptom clusters: A resting-state fMRI study.
        J Affect Disord. 2009; 115: 430-438
        • Frodl T.
        • Scheuerecker J.
        • Albrecht J.
        • Kleemann A.M.
        • Müller-Schunk S.
        • Koutsouleris N.
        • et al.
        Neuronal correlates of emotional processing in patients with major depression.
        World J Biol Psychiatry. 2009; 10: 202-208
        • Kennedy S.H.
        • Konarski J.Z.
        • Segal Z.V.
        • Lau M.A.
        • Bieling P.J.
        • McIntyre R.S.
        • Mayberg H.S.
        Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial.
        Am J Psychiatry. 2007; 164: 778-788
        • Brody A.L.
        • Saxena S.
        • Stoessel P.
        • Gillies L.A.
        • Fairbanks L.A.
        • Alborzian S.
        • et al.
        Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: Preliminary findings.
        Arch Gen Psychiatry. 2001; 58: 631-640
        • Norbury R.
        • Selvaraj S.
        • Taylor M.J.
        • Harmer C.
        • Cowen P.J.
        Increased neural response to fear in patients recovered from depression: A 3T functional magnetic resonance imaging study.
        Psychol Med. 2010; 40: 425-432
        • Anand A.
        • Li Y.
        • Wang Y.
        • Lowe M.J.
        • Dzemidzic M.
        Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression.
        Psychiatry Res. 2009; 171: 189-198
        • Veer I.M.
        • Beckmann C.F.
        • Baerends E.
        • van Tol M.J.
        • Ferrarini L.
        • Milles J.R.
        • et al.
        Reduced functional connectivity in major depression: A whole brain study of multiple resting-state networks.
        Neuroimage. 2009; 47: S70
        • Greicius M.D.
        • Flores B.H.
        • Menon V.
        • Glover G.H.
        • Solvason H.B.
        • Kenna H.
        • et al.
        Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus.
        Biol Psychiatry. 2007; 62: 429-437
        • Bassett D.S.
        • Bullmore E.T.
        Human brain networks in health and disease.
        Curr Opin Neurol. 2009; 22: 340-347
        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Wang J.
        • Zuo X.
        • He Y.
        Graph-based network analysis of resting-state functional MRI.
        Front Syst Neurosci. 2010; 4: 16
        • He Y.
        • Evans A.
        Graph theoretical modeling of brain connectivity.
        Curr Opin Neurol. 2010; 23: 341-350
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: Uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069
        • Stam C.J.
        Characterization of anatomical and functional connectivity in the brain: A complex networks perspective.
        Int J Psychophysiol. 2010; 77: 186-194
        • Achard S.
        • Salvador R.
        • Whitcher B.
        • Suckling J.
        • Bullmore E.
        A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs.
        J Neurosci. 2006; 26: 63-72
        • He Y.
        • Chen Z.J.
        • Evans A.C.
        Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.
        Cereb Cortex. 2007; 17: 2407-2419
        • Salvador R.
        • Suckling J.
        • Coleman M.R.
        • Pickard J.D.
        • Menon D.
        • Bullmore E.
        Neurophysiological architecture of functional magnetic resonance images of human brain.
        Cereb Cortex. 2005; 15: 1332-1342
        • Hagmann P.
        • Kurant M.
        • Gigandet X.
        • Thiran P.
        • Wedeen V.J.
        • Meuli R.
        • Thiran J.P.
        Mapping human whole-brain structural networks with diffusion MRI.
        PLoS ONE. 2007; 2: e597
        • Stam C.J.
        Functional connectivity patterns of human magnetoencephalographic recordings: A “small-world” network?.
        Neurosci Lett. 2004; 355: 25-28
        • He Y.
        • Chen Z.
        • Evans A.
        Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease.
        J Neurosci. 2008; 28: 4756-4766
        • Supekar K.
        • Menon V.
        • Rubin D.
        • Musen M.
        • Greicius M.D.
        Network analysis of intrinsic functional brain connectivity in Alzheimer's disease.
        PLoS Comput Biol. 2008; 4: e1000100
        • Stam C.J.
        • de Haan W.
        • Daffertshofer A.
        • Jones B.F.
        • Manshanden I.
        • van Cappellen van Walsum A.M.
        • et al.
        Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease.
        Brain. 2009; 132: 213-224
        • Lo C.Y.
        • Wang P.N.
        • Chou K.H.
        • Wang J.
        • He Y.
        • Lin C.P.
        Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease.
        J Neurosci. 2010; 30: 16876-16885
        • Yu Q.
        • Sui J.
        • Rachakonda S.
        • He H.
        • Pearlson G.
        • Calhoun V.D.
        Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task.
        Front Syst Neurosci. 2011; 5: 7
        • Lynall M.E.
        • Bassett D.S.
        • Kerwin R.
        • McKenna P.J.
        • Kitzbichler M.
        • Muller U.
        • Bullmore E.
        Functional connectivity and brain networks in schizophrenia.
        J Neurosci. 2010; 30: 9477-9487
        • van den Heuvel M.P.
        • Mandl R.C.
        • Stam C.J.
        • Kahn R.S.
        • Hulshoff Pol H.E.
        Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis.
        J Neurosci. 2010; 30: 15915-15926
        • Zalesky A.
        • Fornito A.
        • Seal M.L.
        • Cocchi L.
        • Westin C.F.
        • Bullmore E.T.
        • et al.
        Disrupted axonal fiber connectivity in schizophrenia.
        Biol Psychiatry. 2011; 69: 80-89
        • Liu Y.
        • Liang M.
        • Zhou Y.
        • He Y.
        • Hao Y.
        • Song M.
        • et al.
        Disrupted small-world networks in schizophrenia.
        Brain. 2008; 131: 945-961
        • Leistedt S.J.
        • Coumans N.
        • Dumont M.
        • Lanquart J.P.
        • Stam C.J.
        • Linkowski P.
        Altered sleep brain functional connectivity in acutely depressed patients.
        Hum Brain Mapp. 2009; 30: 2207-2219
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • Hyde J.S.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Reson Med. 1995; 34: 537-541
        • Fox M.D.
        • Raichle M.E.
        Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.
        Nat Rev Neurosci. 2007; 8: 700-711
        • Zhang D.
        • Raichle M.E.
        Disease and the brain's dark energy.
        Nat Rev Neurol. 2010; 6: 15-28
        • Sheline Y.I.
        • Price J.L.
        • Yan Z.
        • Mintun M.A.
        Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus.
        Proc Natl Acad Sci U S A. 2010; 107: 11020-11025
        • First M.
        • Spitzer R.
        • Gibbon M.
        • Williams J.
        Structured Clinical Interview for DSM-IV Axis I Disorders.
        American Psychiatric Publishing, Washington, DC1997
        • Williams J.B.
        A structured interview guide for the Hamilton Depression Rating Scale.
        Arch Gen Psychiatry. 1988; 45: 742-747
        • Guy W.
        ECDEU Assessment Manual for Psychopharmacology.
        National Institute of Mental Health, Rockville, MD1976
        • Tzourio-Mazoyer N.
        • Landeau B.
        • Papathanassiou D.
        • Crivello F.
        • Etard O.
        • Delcroix N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        Neuroimage. 2002; 15: 273-289
        • Ferrarini L.
        • Veer I.M.
        • Baerends E.
        • van Tol M.J.
        • Renken R.J.
        • van der Wee N.J.
        • et al.
        Hierarchical functional modularity in the resting-state human brain.
        Hum Brain Mapp. 2009; 30: 2220-2231
        • Liu P.
        • Zhang Y.
        • Zhou G.
        • Yuan K.
        • Qin W.
        • Zhuo L.
        • et al.
        Partial correlation investigation on the default mode network involved in acupuncture: An fMRI study.
        Neurosci Lett. 2009; 462: 183-187
        • Nakamura T.
        • Hillary F.G.
        • Biswal B.B.
        Resting network plasticity following brain injury.
        PLoS ONE. 2009; 4: e8220
        • Achard S.
        • Bullmore E.
        Efficiency and cost of economical brain functional networks.
        PLoS Comput Biol. 2007; 3: e17
        • He Y.
        • Dagher A.
        • Chen Z.
        • Charil A.
        • Zijdenbos A.
        • Worsley K.
        • Evans A.
        Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load.
        Brain. 2009; 132: 3366-3379
        • Watts D.J.
        • Strogatz S.H.
        Collective dynamics of “small-world” networks.
        Nature. 1998; 393: 440-442
        • Bassett D.S.
        • Bullmore E.
        • Verchinski B.A.
        • Mattay V.S.
        • Weinberger D.R.
        • Meyer-Lindenberg A.
        Hierarchical organization of human cortical networks in health and schizophrenia.
        J Neurosci. 2008; 28: 9239-9248
        • Latora V.
        • Marchiori M.
        Efficient behavior of small-world networks.
        Phys Rev Lett. 2001; 87: 198701
        • Freeman L.C.
        A set of measures of centrality based on betweenness.
        Sociometry. 1977; 40: 35-41
        • Wang J.
        • Wang L.
        • Zang Y.
        • Yang H.
        • Tang H.
        • Gong Q.
        • et al.
        Parcellation-dependent small-world brain functional networks: A resting-state fMRI study.
        Hum Brain Mapp. 2009; 30: 1511-1523
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Bullmore E.T.
        • Suckling J.
        • Overmeyer S.
        • Rabe-Hesketh S.
        • Taylor E.
        • Brammer M.J.
        Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain.
        IEEE Trans Med Imaging. 1999; 18: 32-42
        • Bullmore E.T.
        • Bassett D.S.
        Brain graphs: Graphical models of the human brain connectome.
        Annu Rev Clin Psychol. 2011; 7: 113-140
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain's default network: Anatomy, function, and relevance to disease.
        Ann N Y Acad Sci. 2008; 1124: 1-38
        • Greicius M.D.
        • Krasnow B.
        • Reiss A.L.
        • Menon V.
        Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.
        Proc Natl Acad Sci U S A. 2003; 100: 253-258
        • Raichle M.E.
        • MacLeod A.M.
        • Snyder A.Z.
        • Powers W.J.
        • Gusnard D.A.
        • Shulman G.L.
        A default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 676-682
        • Sporns O.
        The human connectome: A complex network.
        Ann N Y Acad Sci. 2011; 1224: 109-125
        • Lehericy S.
        • Gerardin E.
        Normal functional imaging of the basal ganglia.
        Epileptic Disord. 2002; 4: S23-S30
        • Gabbay V.
        • Hess D.A.
        • Liu S.
        • Babb J.S.
        • Klein R.G.
        • Gonen O.
        Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: A proton MR spectroscopy study.
        Am J Psychiatry. 2007; 164: 1881-1889
        • Kim M.J.
        • Hamilton J.P.
        • Gotlib I.H.
        Reduced caudate gray matter volume in women with major depressive disorder.
        Psychiatry Res. 2008; 164: 114-122
        • Krishnan K.R.
        • McDonald W.M.
        • Escalona P.R.
        • Doraiswamy P.M.
        • Na C.
        • Husain M.M.
        • et al.
        Magnetic resonance imaging of the caudate nuclei in depression.
        Arch Gen Psychiatry. 1992; 49: 553-557
        • Wu Q.Z.
        • Li D.M.
        • Kuang W.H.
        • Zhang T.J.
        • Lui S.
        • Huang X.Q.
        • et al.
        Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI [published online ahead of print July 27].
        Hum Brain Mapp. 2010; https://doi.org/10.1002/hbm.21108
        • Pizzagalli D.A.
        • Holmes A.J.
        • Dillon D.G.
        • Goetz E.L.
        • Birk J.L.
        • Bogdan R.
        • et al.
        Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder.
        Am J Psychiatry. 2009; 166: 702-710
        • Bremner J.D.
        • Narayan M.
        • Anderson E.R.
        • Staib L.H.
        • Miller H.L.
        • Charney D.S.
        Hippocampal volume reduction in major depression.
        Am J Psychiatry. 2000; 157: 115-117
        • Czéh B.
        • Lucassen P.J.
        What causes the hippocampal volume decrease in depression?.
        Eur Arch Psychiatry Clin Neurosci. 2007; 257: 250-260
        • Gonul A.S.
        • Kitis O.
        • Eker M.C.
        • Eker O.D.
        • Ozan E.
        • Coburn K.
        Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients.
        World J Biol Psychiatry. 2011; 12: 110-118
        • Campbell S.
        • Macqueen G.
        The role of the hippocampus in the pathophysiology of major depression.
        J Psychiatry Neurosci. 2004; 29: 417-426
        • MacQueen G.M.
        Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder.
        J Psychiatry Neurosci. 2009; 34: 343-349
        • Sheline Y.I.
        • Sanghavi M.
        • Mintun M.A.
        • Gado M.H.
        Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression.
        J Neurosci. 1999; 19: 5034-5043
        • de Asis J.M.
        • Stern E.
        • Alexopoulos G.S.
        • Pan H.
        • Van Gorp W.
        • Blumberg H.
        • et al.
        Hippocampal and anterior cingulate activation deficits in patients with geriatric depression.
        Am J Psychiatry. 2001; 158: 1321-1323
        • Craddock R.C.
        • Holtzheimer 3rd, P.E.
        • Hu X.P.
        • Mayberg H.S.
        Disease state prediction from resting state functional connectivity.
        Magn Reson Med. 2009; 62: 1619-1628
        • Cheng Y.Q.
        • Xu J.
        • Chai P.
        • Li H.J.
        • Luo C.R.
        • Yang T.
        • et al.
        Brain volume alteration and the correlations with the clinical characteristics in drug-naïve first-episode MDD patients: A voxel-based morphometry study.
        Neurosci Lett. 2010; 480: 30-34
        • Maller J.J.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Hippocampal volumetrics in depression: The importance of the posterior tail.
        Hippocampus. 2007; 17: 1023-1027
        • Videbech P.
        • Ravnkilde B.
        Hippocampal volume and depression: A meta-analysis of MRI studies.
        Am J Psychiatry. 2004; 161: 1957-1966
        • Haldane M.
        • Cunningham G.
        • Androutsos C.
        • Frangou S.
        Structural brain correlates of response inhibition in bipolar disorder I.
        J Psychopharmacol. 2008; 22: 138-143
        • Ito H.
        • Kawashima R.
        • Awata S.
        • Ono S.
        • Sato K.
        • Goto R.
        • et al.
        Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique.
        J Nucl Med. 1996; 37: 410-414
        • Ma N.
        • Li L.
        • Shu N.
        • Liu J.
        • Gong G.L.
        • He Z.
        • et al.
        White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder.
        Am J Psychiatry. 2007; 164: 823-826
        • Hayasaka S.
        • Laurienti P.J.
        Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data.
        Neuroimage. 2010; 50: 499-508
        • Zalesky A.
        • Fornito A.
        • Harding I.H.
        • Cocchi L.
        • Yücel M.
        • Pantelis C.
        • Bullmore E.T.
        Whole-brain anatomical networks: Does the choice of nodes matter?.
        Neuroimage. 2010; 50: 970-983
        • Fornito A.
        • Zalesky A.
        • Bullmore E.T.
        Network scaling effects in graph analytic studies of human resting-state FMRI data.
        Front Syst Neurosci. 2010; 4: 22
        • Sanabria-Diaz G.
        • Melie-García L.
        • Iturria-Medina Y.
        • Alemán-Gómez Y.
        • Hernández-González G.
        • Valdés-Urrutia L.
        • et al.
        Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks.
        Neuroimage. 2010; 50: 1497-1510
        • Mataix-Cols D.
        • Wooderson S.
        • Lawrence N.
        • Brammer M.J.
        • Speckens A.
        • Phillips M.L.
        Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2004; 61: 564-576
        • Damoiseaux J.S.
        • Greicius M.D.
        Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity.
        Brain Struct Funct. 2009; 213: 525-533
        • Honey C.J.
        • Sporns O.
        • Cammoun L.
        • Gigandet X.
        • Thiran J.P.
        • Meuli R.
        • Hagmann P.
        Predicting human resting-state functional connectivity from structural connectivity.
        Proc Natl Acad Sci U S A. 2009; 106: 2035-2040