Brain Energy Consumption Induced by Electrical Stimulation Promotes Systemic Glucose Uptake


      Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate–sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.


      In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with 31phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.


      We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by 31phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.


      Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Marshall L.
        • Helgadottir H.
        • Molle M.
        • Born J.
        Boosting slow oscillations during sleep potentiates memory.
        Nature. 2006; 444: 610-613
        • Fritsch B.
        • Reis J.
        • Martinowich K.
        • Schambra H.M.
        • Ji Y.
        • Cohen L.G.
        • et al.
        Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning.
        Neuron. 2010; 66: 198-204
        • Dockery C.A.
        • Hueckel-Weng R.
        • Birbaumer N.
        • Plewnia C.
        Enhancement of planning ability by transcranial direct current stimulation.
        J Neurosci. 2009; 29: 7271-7277
        • Hecht D.
        • Walsh V.
        • Lavidor M.
        Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task.
        J Neurosci. 2010; 30: 4241-4245
        • Fregni F.
        • Pascual-Leone A.
        Technology insight: Noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS.
        Nat Clin Pract Neurol. 2007; 3: 383-393
        • Chang J.Y.
        Brain stimulation for neurological and psychiatric disorders, current status and future direction.
        J Pharmacol Exp Ther. 2004; 309: 1-7
        • Schwartz M.W.
        • Porte Jr, D.
        Diabetes, obesity, and the brain.
        Science. 2005; 307: 375-379
        • Pocai A.
        • Lam T.K.
        • Gutierrez-Juarez R.
        • Obici S.
        • Schwartz G.J.
        • Bryan J.
        • et al.
        Hypothalamic K(ATP) channels control hepatic glucose production.
        Nature. 2005; 434: 1026-1031
        • Lam T.K.
        Neuronal regulation of homeostasis by nutrient sensing.
        Nat Med. 2010; 16: 392-395
        • Waldvogel D.
        • van Gelderen P.
        • Muellbacher W.
        • Ziemann U.
        • Immisch I.
        • Hallett M.
        • et al.
        The relative metabolic demand of inhibition and excitation.
        Nature. 2000; 406: 995-998
        • DeFronzo R.A.
        • Tobin J.D.
        • Andres R.
        Glucose clamp technique: A method for quantifying insulin secretion and resistance.
        Am J Physiol. 1979; 237: E214-E223
        • Andres R.
        • Swerdloff R.
        • Pozefsky T.
        • Coleman D.
        Manual feedback technique for the control of blood glucose concentration.
        in: Skeggs Jr, L.T. Automation in Analytical Chemistry. Mediad, New York1966: 486-491
        • Oltmanns K.M.
        • Gehring H.
        • Rudolf S.
        • Schultes B.
        • Rook S.
        • Schweiger U.
        • et al.
        Hypoxia causes glucose intolerance in humans.
        Am J Respir Crit Care Med. 2004; 169: 1231-1237
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Oltmanns K.M.
        • Melchert U.H.
        • Scholand-Engler H.G.
        • Schultes B.
        • Schweiger U.
        • Peters A.
        • et al.
        Divergent effects of hyper- and hypoglycemia on circulating vascular endothelial growth factor in humans.
        Metabolism. 2008; 57: 90-94
        • Bachert-Baumann P.
        • Ermark F.
        • Zabel H.J.
        • Sauter R.
        • Semmler W.
        • Lorenz W.J.
        • et al.
        In vivo nuclear Overhauser effect in 31P-(1H) double-resonance experiments in a 1.5-T whole-body MR system.
        Magn Reson Med. 1990; 15: 165-172
        • Barker P.B.
        • Golay X.
        • Artemov D.
        • Ouwerkerk R.
        • Smith M.A.
        • Shaka A.J.
        • et al.
        Broadband proton decoupling for in vivo brain spectroscopy in humans.
        Magn Reson Med. 2001; 45: 226-232
        • Vanhamme L.
        • van den B.A.
        • Van Huffel S.
        Improved method for accurate and efficient quantification of MRS data with use of prior knowledge.
        J Magn Reson. 1997; 129: 35-43
        • Peters A.
        • Schweiger U.
        • Pellerin L.
        • Hubold C.
        • Oltmanns K.M.
        • Conrad M.
        • et al.
        The selfish brain: Competition for energy resources.
        Neurosci Biobehav Rev. 2004; 28: 143-180
        • Peters A.
        • Pellerin L.
        • Dallman M.F.
        • Oltmanns K.M.
        • Schweiger U.
        • Born J.
        • Fehm H.L.
        • et al.
        Causes of obesity: Looking beyond the hypothalamus.
        Prog Neurobiol. 2007; 81: 61-88
        • Oltmanns K.M.
        • Melchert U.H.
        • Scholand-Engler H.G.
        • Howitz M.C.
        • Schultes B.
        • Schweiger U.
        • et al.
        Differential energetic response of brain vs. skeletal muscle upon glycemic variations in healthy humans.
        Am J Physiol Regul Integr Comp Physiol. 2008; 294: R12-R16
        • Iosifescu D.V.
        • Renshaw P.E.
        31P-magnetic resonance spectroscopy and thyroid hormones in major depressive disorder: Toward a bioenergetic mechanism in depression?.
        Harv Rev Psychiatry. 2003; 11: 51-63
        • Rango M.
        • Bozzali M.
        • Prelle A.
        • Scarlato G.
        • Bresolin N.
        Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: A phosphorus magnetic resonance spectroscopy study.
        J Cereb Blood Flow Metab. 2001; 21: 85-91
        • Schmoller A.
        • Hass T.
        • Strugovshchikova O.
        • Melchert U.H.
        • Scholand-Engler H.G.
        • Peters A.
        • et al.
        Evidence for a relationship between body mass and energy metabolism in the human brain.
        J Cereb Blood Flow Metab. 2010; 30: 1403-1410
        • Fox P.T.
        • Raichle M.E.
        • Mintun M.A.
        • Dence C.
        Nonoxidative glucose consumption during focal physiologic neural activity.
        Science. 1988; 241: 462-464
        • Magistretti P.J.
        • Pellerin L.
        • Rothman D.L.
        • Shulman R.G.
        Energy on demand.
        Science. 1999; 283: 496-497
        • Cogiamanian F.
        • Brunoni A.R.
        • Boggio P.S.
        • Fregni F.
        • Ciocca M.
        • Priori A.
        • et al.
        Non-invasive brain stimulation for the management of arterial hypertension.
        Med Hypotheses. 2010; 74: 332-336
        • Casey D.E.
        Metabolic issues and cardiovascular disease in patients with psychiatric disorders.
        Am J Med. 2005; 118: 15S-22S
        • Musselman D.L.
        • Betan E.
        • Larsen H.
        • Phillips L.S.
        Relationship of depression to diabetes types 1 and 2: Epidemiology, biology, and treatment.
        Biol Psychiatry. 2003; 54: 317-329
        • Marcus M.D.
        • Wing R.R.
        • Guare J.
        • Blair E.H.
        • Jawad A.
        Lifetime prevalence of major depression and its effect on treatment outcome in obese type II diabetic patients.
        Diabetes Care. 1992; 15: 253-255
        • Reichel A.
        • Schwarz J.
        • Schulze J.
        • Licinio J.
        • Wong M.L.
        • Bornstein S.R.
        • et al.
        Depression and anxiety symptoms in diabetic patients on continuous subcutaneous insulin infusion (CSII).
        Mol Psychiatry. 2005; 10: 975-976
        • Aikens J.E.
        • Perkins D.W.
        • Lipton B.
        • Piette J.D.
        Longitudinal analysis of depressive symptoms and glycemic control in type 2 diabetes.
        Diabetes Care. 2009; 32: 1177-1181
        • Knol M.J.
        • Twisk J.W.
        • Beekman A.T.
        • Heine R.J.
        • Snoek F.J.
        • Pouwer F.
        • et al.
        Depression as a risk factor for the onset of type 2 diabetes mellitus.
        Diabetologia. 2006; 49: 837-845
        • Gold P.W.
        • Chrousos G.P.
        Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states.
        Mol Psychiatry. 2002; 7: 254-275
        • Oltmanns K.M.
        • Dodt B.
        • Schultes B.
        • Raspe H.H.
        • Schweiger U.
        • Born J.
        • et al.
        Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients.
        Eur J Endocrinol. 2006; 154: 325-331
        • Bonnet F.
        • Irving K.
        • Terra J.L.
        • Nony P.
        • Berthezene F.
        • Moulin P.
        • et al.
        Depressive symptoms are associated with unhealthy lifestyles in hypertensive patients with the metabolic syndrome.
        J Hypertens. 2005; 23: 611-617