Advertisement
Review| Volume 69, ISSUE 12, e145-e157, June 15, 2011

The Roles of Dopamine and Noradrenaline in the Pathophysiology and Treatment of Attention-Deficit/Hyperactivity Disorder

  • Natalia del Campo
    Correspondence
    Address correspondence to Natalia del Campo, Ph.D., University of Cambridge, Department of Psychiatry. Herchel Smith Building, Robinson Way, Cambridge CB2 0SZ, UK
    Affiliations
    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Samuel R. Chamberlain
    Affiliations
    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Barbara J. Sahakian
    Affiliations
    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Trevor W. Robbins
    Affiliations
    Department of Experimental Psychology, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
      Through neuromodulatory influences over fronto-striato-cerebellar circuits, dopamine and noradrenaline play important roles in high-level executive functions often reported to be impaired in attention-deficit/hyperactivity disorder (ADHD). Medications used in the treatment of ADHD (including methylphenidate, dextroamphetamine and atomoxetine) act to increase brain catecholamine levels. However, the precise prefrontal cortical and subcortical mechanisms by which these agents exert their therapeutic effects remain to be fully specified. Herein, we review and discuss the present state of knowledge regarding the roles of dopamine (DA) and noradrenaline in the regulation of corticostriatal circuits, with a focus on the molecular neuroimaging literature (both in ADHD patients and in healthy subjects). Recent positron emission tomography evidence has highlighted the utility of quantifying DA markers, at baseline or following drug administration, in striatal subregions governed by differential cortical connectivity. This approach opens the possibility of characterizing the neurobiological underpinnings of ADHD (and associated cognitive dysfunction) and its treatment by targeting specific neural circuits. It is anticipated that the application of refined and novel positron emission tomography methodology will help to disentangle the overlapping and dissociable contributions of DA and noradrenaline in the prefrontal cortex, thereby aiding our understanding of ADHD and facilitating new treatments.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Biederman J.
        Attention-deficit/hyperactivity disorder: A selective overview.
        Biol Psychiatry. 2005; 57: 1215-1220
        • Solanto M.V.
        Attention-Deficit/Hyperactivity Disorder. Oxford University Press, New York2001
        • Molina B.S.
        • Hinshaw S.P.
        • Swanson J.M.
        • Arnold L.E.
        • Vitiello B.
        • Jensen P.S.
        • et al.
        The MTA at 8 years: Prospective follow-up of children treated for combined-type ADHD in a multisite study.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 484-500
        • Biederman J.
        • Monuteaux M.C.
        • Mick E.
        • Spencer T.
        • Wilens T.E.
        • Silva J.M.
        • et al.
        Young adult outcome of attention deficit hyperactivity disorder: A controlled 10-year follow-up study.
        Psychol Med. 2006; 36: 167-179
        • Arnsten A.F.
        Fundamentals of attention-deficit/hyperactivity disorder: Circuits and pathways.
        J Clin Psychiatry. 2006; 67: 7-12
        • Axelrod J.
        Regulation of the Neurotransmitter Norepinephrine.
        MIT Press, Cambridge, MA1974
        • Spencer T.J.
        • Biederman J.
        • Madras B.K.
        • Faraone S.V.
        • Dougherty D.D.
        • Bonab A.A.
        • et al.
        In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: A focus on the dopamine transporter.
        Biol Psychiatry. 2005; 57: 1293-1300
        • Madras B.K.
        • Fischman A.J.
        • Meltzer P.C.
        Methods for diagnosing and monitoring treatment ADHD by assessing the dopamine transporter level.
        (In: Office UP, editor)2006
        • Volkow N.D.
        • Wang G.J.
        • Newcorn J.
        • Fowler J.S.
        • Telang F.
        • Solanto M.V.
        • et al.
        Brain dopamine transporter levels in treatment and drug naïve adults with ADHD.
        Neuroimage. 2007; 34: 1182-1190
        • Volkow N.D.
        • Wang G.J.
        • Newcorn J.
        • Telang F.
        • Solanto M.V.
        • Fowler J.S.
        • et al.
        Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder.
        Arch Gen Psychiatry. 2007; 64: 932-940
        • Volkow N.D.
        • Wang G.J.
        • Kollins S.H.
        • Wigal T.L.
        • Newcorn J.H.
        • Telang F.
        • et al.
        Evaluating dopamine reward pathway in ADHD: Clinical implications.
        JAMA. 2009; 302: 1084-1091
        • Krause J.
        SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder.
        Expert Rev Neurother. 2008; 8: 611-625
        • Bowton E.
        • Saunders C.
        • Erreger K.
        • Sakrikar D.
        • Matthies H.J.
        • Sen N.
        • et al.
        Dysregulation of dopamine transporters via dopamine D2 autoreceptors triggers anomalous dopamine efflux associated with attention-deficit hyperactivity disorder.
        J Neurosci. 2010; 30: 6048-6057
        • Krause J.
        • Dresel S.H.
        • Krause K.H.
        • La Fougère C.
        • Zill P.
        • Ackenheil M.
        • et al.
        Striatal dopamine transporter availability and DAT-1 gene in adults with ADHD: No higher DAT availability in patients with homozygosity for the 10-repeat allele.
        World J Biol Psychiatry. 2006; 7: 152-157
        • van Dyck C.H.
        • Malison R.T.
        • Jacobsen L.K.
        • Seibyl J.P.
        • Staley J.K.
        • Laruelle M.
        • et al.
        Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene.
        J Nucl Med. 2005; 46: 745-751
        • Cheon K.A.
        • Ryu Y.H.
        • Kim J.W.
        • Cho D.Y.
        The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: Relating to treatment response to methylphenidate.
        Eur Neuropsychopharmacol. 2005; 15: 95-101
        • Arnsten A.F.
        • Li B.M.
        Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions.
        Biol Psychiatry. 2005; 57: 1377-1384
        • Ernst M.
        • Zametkin A.J.
        • Matochik J.A.
        • Jons P.H.
        • Cohen R.M.
        DOPA decarboxylase activity in attention deficit hyperactivity disorder adults.
        J Neurosci. 1998; 18: 5901-5907
        • Ernst M.
        • Zametkin A.J.
        • Matochik J.A.
        • Pascualvaca D.
        • Jons P.H.
        • Cohen R.M.
        High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder.
        Am J Psychiatry. 1999; 156: 1209-1215
        • Ludolph A.G.
        • Kassubek J.
        • Schmeck K.
        • Glaser C.
        • Wunderlich A.
        • Buck A.K.
        • et al.
        Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: A 3,4-dihydroxy-6-[18F]fluorophenyl-l-alanine PET study.
        Neuroimage. 2008; 41: 718-727
        • Forssberg H.
        • Fernell E.
        • Waters S.
        • Waters N.
        • Tedroff J.
        Altered pattern of brain dopamine synthesis in male adolescents with attention deficit hyperactivity disorder.
        Behav Brain Funct. 2006; 2: 40
        • van Dyck C.H.
        • Seibyl J.P.
        • Malison R.T.
        • Laruelle M.
        • Zoghbi S.S.
        • Baldwin R.M.
        • et al.
        Age-related decline in dopamine transporters: Analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries.
        Am J Geriatr Psychiatry. 2002; 10: 36-43
        • Takahashi H.
        • Fujimura Y.
        • Hayashi M.
        • Takano H.
        • Kato M.
        • Okubo Y.
        • et al.
        Enhanced dopamine release by nicotine in cigarette smokers: A double-blind, randomized, placebo-controlled pilot study.
        Int J Neuropsychopharmacol. 2008; 11: 413-417
        • Salokangas R.K.
        • Vilkman H.
        • Ilonen T.
        • Taiminen T.
        • Bergman J.
        • Haaparanta M.
        • et al.
        High levels of dopamine activity in the basal ganglia of cigarette smokers.
        Am J Psychiatry. 2000; 157: 632-634
        • Vles J.S.
        • Feron F.J.
        • Hendriksen J.G.
        • Jolles J.
        • van Kroonenburgh M.J.
        • Weber W.E.
        Methylphenidate down-regulates the dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder (ADHD).
        Neuropediatrics. 2003; 34: 77-80
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Mawlawi O.
        • Hwang D.R.
        • Huang Y.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography.
        J Cereb Blood Flow Metab. 2003; 23: 285-300
        • Volkow N.D.
        • Wang G.J.
        • Newcorn J.H.
        • Kollins S.H.
        • Wigal T.L.
        • Telang F.
        • et al.
        Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway [published online ahead of print September 21].
        Mol Psychiatry. 2010;
        • Rosa-Neto P.
        • Lou H.C.
        • Cumming P.
        • Pryds O.
        • Karrebaek H.
        • Lunding J.
        • et al.
        Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder.
        Neuroimage. 2005; 25: 868-876
        • Jucaite A.
        • Fernell E.
        • Halldin C.
        • Forssberg H.
        • Farde L.
        Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: Association between striatal dopamine markers and motor hyperactivity.
        Biol Psychiatry. 2005; 57: 229-238
        • Lou H.C.
        • Rosa P.
        • Pryds O.
        • Karrebaek H.
        • Lunding J.
        • Cumming P.
        • et al.
        ADHD: Increased dopamine receptor availability linked to attention deficit and low neonatal cerebral blood flow.
        Dev Med Child Neurol. 2004; 46: 179-183
        • Rosa Neto P.
        • Lou H.
        • Cumming P.
        • Pryds O.
        • Gjedde A.
        Methylphenidate-evoked potentiation of extracellular dopamine in the brain of adolescents with premature birth: Correlation with attentional deficit.
        Ann N Y Acad Sci. 2002; 965: 434-439
        • Ilgin N.
        • Senol S.
        • Gucuyener K.
        • Gokcora N.
        • Sener S.
        Is increased D2 receptor availability associated with response to stimulant medication in ADHD.
        Dev Med Child Neurol. 2001; 43: 755-760
        • Hesse S.
        • Ballaschke O.
        • Barthel H.
        • Sabri O.
        Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder.
        Psychiatry Res. 2009; 171: 120-128
        • Szobot C.M.
        • Shih M.C.
        • Schaefer T.
        • Júnior N.
        • Hoexter M.Q.
        • Fu Y.K.
        • et al.
        Methylphenidate DAT binding in adolescents with attention-deficit/hyperactivity disorder comorbid with substance use disorder–a single photon emission computed tomography with [Tc(99m)]TRODAT-1 study.
        Neuroimage. 2008; 40: 1195-1201
        • Spencer T.J.
        • Biederman J.
        • Madras B.K.
        • Dougherty D.D.
        • Bonab A.A.
        • Livni E.
        • et al.
        Further evidence of dopamine transporter dysregulation in ADHD: A controlled PET imaging study using altropane.
        Biol Psychiatry. 2007; 62: 1059-1061
        • Larisch R.
        • Sitte W.
        • Antke C.
        • Nikolaus S.
        • Franz M.
        • Tress W.
        • et al.
        Striatal dopamine transporter density in drug naive patients with attention-deficit/hyperactivity disorder.
        Nucl Med Commun. 2006; 27: 267-270
        • la Fougère C.
        • Krause J.
        • Krause K.H.
        • Josef Gildehaus F.
        • Hacker M.
        • Koch W.
        • et al.
        Value of 99mTc-TRODAT-1 SPECT to predict clinical response to methylphenidate treatment in adults with attention deficit hyperactivity disorder.
        Nucl Med Commun. 2006; 27: 733-737
        • Krause J.
        • la Fougere C.
        • Krause K.H.
        • Ackenheil M.
        • Dresel S.H.
        Influence of striatal dopamine transporter availability on the response to methylphenidate in adult patients with ADHD.
        Eur Arch Psychiatry Clin Neurosci. 2005; 255: 428-431
        • Feron F.J.
        • Hendriksen J.G.
        • van Kroonenburgh M.J.
        • Blom-Coenjaerts C.
        • Kessels A.G.
        • Jolles J.
        • et al.
        Dopamine transporter in attention-deficit hyperactivity disorder normalizes after cessation of methylphenidate.
        Pediatr Neurol. 2005; 33: 179-183
        • Cheon K.A.
        • Ryu Y.H.
        • Kim Y.K.
        • Namkoong K.
        • Kim C.H.
        • Lee J.D.
        Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder.
        Eur J Nucl Med Mol Imaging. 2003; 30: 306-311
        • van Dyck C.H.
        • Quinlan D.M.
        • Cretella L.M.
        • Staley J.K.
        • Malison R.T.
        • Baldwin R.M.
        • et al.
        Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder.
        Am J Psychiatry. 2002; 159: 309-312
        • Krause K.H.
        • Dresel S.H.
        • Krause J.
        • Kung H.F.
        • Tatsch K.
        Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: Effects of methylphenidate as measured by single photon emission computed tomography.
        Neurosci Lett. 2000; 285: 107-110
        • Dresel S.
        • Krause J.
        • Krause K.H.
        • LaFougere C.
        • Brinkbäumer K.
        • Kung H.F.
        • et al.
        Attention deficit hyperactivity disorder: Binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment.
        Eur J Nucl Med. 2000; 27: 1518-1524
        • Dougherty D.D.
        • Bonab A.A.
        • Spencer T.J.
        • Rauch S.L.
        • Madras B.K.
        • Fischman A.J.
        Dopamine transporter density in patients with attention deficit hyperactivity disorder.
        Lancet. 1999; 354: 2132-2133
        • Wilens T.E.
        Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder.
        J Clin Psychopharmacol. 2008; 28: S46-S53
        • Zetterström T.
        • Sharp T.
        • Collin A.K.
        • Ungerstedt U.
        In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPAC.
        Eur J Pharmacol. 1988; 148: 327-334
        • Kuczenski R.
        • Segal D.S.
        Differential effects of D- and L-amphetamine and methylphenidate on rat striatal dopamine biosynthesis.
        Eur J Pharmacol. 1975; 30: 244-251
        • Robbins T.W.
        • Sahakian B.J.
        “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology.
        Neuropharmacology. 1979; 18: 931-950
        • Turner D.C.
        • Blackwell A.D.
        • Dowson J.H.
        • McLean A.
        • Sahakian B.J.
        Neurocognitive effects of methylphenidate in adult attention-deficit/hyperactivity disorder.
        Psychopharmacol (Berl). 2005; 178: 286-295
        • Mehta M.A.
        • Goodyer I.M.
        • Sahakian B.J.
        Methylphenidate improves working memory and set-shifting in AD/HD: Relationships to baseline memory capacity.
        J Child Psychol Psychiatry. 2004; 45: 293-305
        • Chamberlain S.R.
        • Robbins T.W.
        • Winder-Rhodes S.
        • Müller U.
        • Sahakian B.J.
        • Blackwell A.D.
        • et al.
        Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery.
        Biol Psychiatry. 2010; ([published online ahead of print November 2])
        • Elliott R.
        • Sahakian B.J.
        • Matthews K.
        • Bannerjea A.
        • Rimmer J.
        • Robbins T.W.
        Effects of methylphenidate on spatial working memory and planning in healthy young adults.
        Psychopharmacol (Berl). 1997; 131: 196-206
        • Mehta M.A.
        • Owen A.M.
        • Sahakian B.J.
        • Mavaddat N.
        • Pickard J.D.
        • Robbins T.W.
        Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.
        J Neurosci. 2000; 20: RC65
        • Koelega H.S.
        Stimulant drugs and vigilance performance: A review.
        Psychopharmacol (Berl). 1993; 111: 1-16
        • Turner D.C.
        • Robbins T.W.
        • Clark L.
        • Aron A.R.
        • Dowson J.
        • Sahakian B.J.
        Relative lack of cognitive effects of methylphenidate in elderly male volunteers.
        Psychopharmacol (Berl). 2003; 168: 455-464
        • Clatworthy P.L.
        • Lewis S.J.
        • Brichard L.
        • Hong Y.T.
        • Izquierdo D.
        • Clark L.
        • et al.
        Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory.
        J Neurosci. 2009; 29: 4690-4696
        • Naylor H.
        • Halliday R.
        • Callaway E.
        The effect of methylphenidate on information processing.
        Psychopharmacol (Berl). 1985; 86: 90-95
        • Rhodes S.M.
        • Coghill D.R.
        • Matthews K.
        Acute neuropsychological effects of methylphenidate in stimulant drug-naive boys with ADHD II--broader executive and non-executive domains.
        J Child Psychol Psychiatry. 2006; 47: 1184-1194
        • Rapoport J.L.
        • Buchsbaum M.S.
        • Weingartner H.
        • Zahn T.P.
        • Ludlow C.
        • Mikkelsen E.J.
        Dextroamphetamine.
        Arch Gen Psychiatry. 1980; 37: 933-943
        • Mattay V.S.
        • Callicott J.H.
        • Bertolino A.
        • Heaton I.
        • Frank J.A.
        • Coppola R.
        • et al.
        Effects of dextroamphetamine on cognitive performance and cortical activation.
        Neuroimage. 2000; 12: 268-275
        • Arnsten A.F.
        • Goldman-Rakic P.S.
        Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism.
        Arch Gen Psychiatry. 1998; 55: 362-368
        • Mattay V.S.
        • Goldberg T.E.
        • Fera F.
        • Hariri A.R.
        • Tessitore A.
        • Egan M.F.
        • et al.
        Catechol O-methyltransferase val158–met genotype and individual variation in the brain response to amphetamine.
        Proc Natl Acad Sci U S A. 2003; 100: 6186-6191
        • Williams G.V.
        • Goldman-Rakic P.S.
        Modulation of memory fields by dopamine D1 receptors in prefrontal cortex.
        Nature. 1995; 376: 572-575
        • Robbins T.W.
        From behavior to cognition: Functions of mesostriatal, mesolimbic and mesocortical dopamine systems.
        in: Iversen L.L. Iversen S.D. Dunnett S.B. Bjorklund A. Dopamine Handbook. Oxford University Press, New York2010: 203-214
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Gatley S.J.
        • Logan J.
        • Ding Y.S.
        • et al.
        Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate.
        Am J Psychiatry. 1998; 155: 1325-1331
        • Volkow N.D.
        • Wang G.
        • Fowler J.S.
        • Logan J.
        • Gerasimov M.
        • Maynard L.
        • et al.
        Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.
        J Neurosci. 2001; 21: RC121
        • Volkow N.D.
        • Fowler J.S.
        • Wang G.
        • Ding Y.
        • Gatley S.J.
        Mechanism of action of methylphenidate: Insights from PET imaging studies.
        J Atten Disord. 2002; 6: S31-S43
        • Riccardi P.
        • Li R.
        • Ansari M.S.
        • Zald D.
        • Park S.
        • Dawant B.
        • et al.
        Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans.
        Neuropsychopharmacology. 2006; 31: 1016-1026
        • Cropley V.L.
        • Innis R.B.
        • Nathan P.J.
        • Brown A.K.
        • Sangare J.L.
        • Lerner A.
        • et al.
        Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans.
        Synapse. 2008; 62: 399-408
        • Slifstein M.
        • Kegeles L.S.
        • Xu X.
        • Thompson J.L.
        • Urban N.
        • Castrillon J.
        • et al.
        Striatal and extrastriatal dopamine release measured with PET and [(18)F] fallypride.
        Synapse. 2010; 64: 350-362
        • Moghaddam B.
        • Berridge C.W.
        • Goldman-Rakic P.S.
        • Bunney B.S.
        • Roth R.H.
        In vivo assessment of basal and drug-induced dopamine release in cortical and subcortical regions of the anesthetized primate.
        Synapse. 1993; 13: 215-222
        • Sesack S.R.
        • Hawrylak V.A.
        • Matus C.
        • Guido M.A.
        • Levey A.I.
        Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter.
        J Neurosci. 1998; 18: 2697-2708
        • Morón J.A.
        • Brockington A.
        • Wise R.A.
        • Rocha B.A.
        • Hope B.T.
        Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines.
        J Neurosci. 2002; 22: 389-395
        • Montgomery A.J.
        • Asselin M.C.
        • Farde L.
        • Grasby P.M.
        Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET.
        J Cereb Blood Flow Metab. 2007; 27: 369-377
        • Haber S.N.
        • Fudge J.L.
        • McFarland N.R.
        Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum.
        J Neurosci. 2000; 20: 2369-2382
        • Haber S.N.
        The primate basal ganglia: Parallel and integrative networks.
        J Chem Neuroanat. 2003; 26: 317-330
        • Lehéricy S.
        • Ducros M.
        • Van de Moortele P.F.
        • Francois C.
        • Thivard L.
        • Poupon C.
        • et al.
        Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans.
        Ann Neurol. 2004; 55: 522-529
        • Draganski B.
        • Kherif F.
        • Klöppel S.
        • Cook P.A.
        • Alexander D.C.
        • Parker G.J.
        • et al.
        Evidence for segregated and integrative connectivity patterns in the human basal ganglia.
        J Neurosci. 2008; 28: 7143-7152
        • Cohen M.X.
        • Schoene-Bake J.C.
        • Elger C.E.
        • Weber B.
        Connectivity-based segregation of the human striatum predicts personality characteristics.
        Nat Neurosci. 2009; 12: 32-34
        • Di Martino A.
        • Scheres A.
        • Margulies D.S.
        • Kelly A.M.
        • Uddin L.Q.
        • Shehzad Z.
        • et al.
        Functional connectivity of human striatum: A resting state FMRI study.
        Cereb Cortex. 2008; 18: 2735-2747
        • Kelly C.
        • de Zubicaray G.
        • Di Martino A.
        • Copland D.A.
        • Reiss P.T.
        • Klein D.F.
        • et al.
        L-dopa modulates functional connectivity in striatal cognitive and motor networks: A double-blind placebo-controlled study.
        J Neurosci. 2009; 29: 7364-7378
        • Rubia K.
        • Halari R.
        • Cubillo A.
        • Mohammad A.M.
        • Brammer M.
        • Taylor E.
        Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task.
        Neuropharmacology. 2009; 57: 640-652
        • Cervenka S.
        • Bäckman L.
        • Cselényi Z.
        • Halldin C.
        • Farde L.
        Associations between dopamine D2-receptor binding and cognitive performance indicate functional compartmentalization of the human striatum.
        Neuroimage. 2008; 40: 1287-1295
        • Kegeles L.S.
        • Abi-Dargham A.
        • Frankle W.G.
        • Gil R.
        • Cooper T.B.
        • Slifstein M.
        • et al.
        Increased synaptic dopamine function in associative regions of the striatum in schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 231-239
        • Martinez D.
        • Narendran R.
        • Foltin R.W.
        • Slifstein M.
        • Hwang D.R.
        • Broft A.
        • et al.
        Amphetamine-induced dopamine release: Markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine.
        Am J Psychiatry. 2007; 164: 622-629
        • Sesack S.R.
        • Aoki C.
        • Pickel V.M.
        Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets.
        J Neurosci. 1994; 14: 88-106
        • Mercuri N.B.
        • Saiardi A.
        • Bonci A.
        • Picetti R.
        • Calabresi P.
        • Bernardi G.
        • et al.
        Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice.
        Neuroscience. 1997; 79: 323-327
        • Bunney B.S.
        • Achajanian G.K.
        d-amphetamine-induced inhibition of central dopaminergic neurons: Mediation by a striato-nigral feedback pathway.
        Science. 1976; 192: 391-393
        • Shi W.X.
        • Pun C.L.
        • Zhou Y.
        Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons.
        Neuropsychopharmacology. 2004; 29: 2160-2167
        • Leo D.
        • Sorrentino E.
        • Volpicelli F.
        • Eyman M.
        • Greco D.
        • Viggiano D.
        • et al.
        Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD.
        Neurosci Biobehav Rev. 2003; 27: 661-669
        • Viggiano D.
        • Vallone D.
        • Sadile A.
        Dysfunctions in dopamine systems and ADHD: Evidence from animals and modeling.
        Neural Plast. 2004; 11: 97-114
        • Berridge C.W.
        • Devilbiss D.M.
        Psychostimulants as cognitive enhancers: The prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2010; ([published online ahead of print September 25])
        • Zametkin A.J.
        • Rapoport J.L.
        Neurobiology of attention deficit disorder with hyperactivity: Where have we come in 50 years?.
        J Am Acad Child Adolesc Psychiatry. 1987; 26: 676-686
        • Arnsten A.F.
        • Steere J.C.
        • Hunt R.D.
        The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function.
        Arch Gen Psychiatry. 1996; 53: 448-455
        • Robbins T.W.
        • Arnsten A.F.
        The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation.
        Annu Rev Neurosci. 2009; 32: 267-287
        • Seneca N.
        • Gulyas B.
        • Varrone A.
        • Schou M.
        • Airaksinen A.
        • Tauscher J.
        • et al.
        Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: A PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2.
        Psychopharmacol (Berl). 2006; 188: 119-127
        • Biederman J.
        • Spencer T.
        Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder.
        Biol Psychiatry. 1999; 46: 1234-1242
        • Casat C.D.
        • Pleasants D.Z.
        • Van Wyck Fleet J.
        A double-blind trial of bupropion in children with attention deficit disorder.
        Psychopharmacol Bull. 1987; 23: 120-122
        • Wilens T.E.
        • Biederman J.
        • Prince J.
        • Spencer T.J.
        • Faraone S.V.
        • Warburton R.
        • et al.
        Six-week, double-blind, placebo-controlled study of desipramine for adult attention deficit hyperactivity disorder.
        Am J Psychiatry. 1996; 153: 1147-1153
        • Sallee F.R.
        • McGough J.
        • Wigal T.
        • Donahue J.
        • Lyne A.
        • Biederman J.
        • SPD503 Study Group
        Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: A placebo-controlled trial.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 155-165
        • Greenhill L.L.
        • Biederman J.
        • Boellner S.W.
        • Rugino T.A.
        • Sangal R.B.
        • Earl C.Q.
        • et al.
        A randomized, double-blind, placebo-controlled study of modafinil film-coated tablets in children and adolescents with attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 2006; 45: 503-511
        • Minzenberg M.J.
        • Carter C.S.
        Modafinil: A review of neurochemical actions and effects on cognition.
        Neuropsychopharmacology. 2008; 33: 1477-1502
        • Duteil J.
        • Rambert F.A.
        • Pessonnier J.
        • Hermant J.F.
        • Gombert R.
        • Assous E.
        Central alpha 1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil; studies with experimental animals.
        Eur J Pharmacol. 1990; 180: 49-58
        • Winder-Rhodes S.E.
        • Chamberlain S.R.
        • Idris M.I.
        • Robbins T.W.
        • Sahakian B.J.
        • Müller U.
        Effects of modafinil and prazosin on cognitive and physiological functions in healthy volunteers.
        J Psychopharmacol (Oxford). 2010; 24: 1649-1657
        • Astafiev S.V.
        • Snyder A.Z.
        • Shulman G.L.
        • Corbetta M.
        Comment on “Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI” and “Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area.”.
        Science. 2010; 328: 309
        • Minzenberg M.J.
        • Watrous A.J.
        • Yoon J.H.
        • Ursu S.
        • Carter C.S.
        Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI.
        Science. 2008; 322: 1700-1702
        • Faraone S.V.
        • Biederman J.
        • Spencer T.
        • Michelson D.
        • Adler L.
        • Reimherr F.
        • Glatt S.J.
        Efficacy of atomoxetine in adult attention-deficit/hyperactivity disorder: A drug-placebo response curve analysis.
        Behav Brain Funct. 2005; 1: 16
        • Bymaster F.P.
        • Katner J.S.
        • Nelson D.L.
        • Hemrick-Luecke S.K.
        • Threlkeld P.G.
        • Heiligenstein J.H.
        • et al.
        Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder.
        Neuropsychopharmacology. 2002; 27: 699-711
        • Volkow N.D.
        Stimulant medications: How to minimize their reinforcing effects?.
        Am J Psychiatry. 2006; 163: 359-361
        • Chamberlain S.R.
        • Robbins T.W.
        • Sahakian B.J.
        The neurobiology of attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2007; 61: 1317-1319
        • Aron A.R.
        • Fletcher P.C.
        • Bullmore E.T.
        • Sahakian B.J.
        • Robbins T.W.
        Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans.
        Nat Neurosci. 2003; 6: 115-116
        • Hampshire A.
        • Chamberlain S.R.
        • Monti M.M.
        • Duncan J.
        • Owen A.M.
        The role of the right inferior frontal gyrus: Inhibition and attentional control.
        Neuroimage. 2010; 50: 1313-1319
        • Logan G.D.
        • Cowan W.B.
        • Davis K.A.
        On the ability to inhibit simple and choice reaction time responses: A model and a method.
        J Exp Psychol Hum Percept Perform. 1984; 10: 276-291
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex.
        Trends Cogn Sci (Regul Ed). 2004; 8: 170-177
        • Lijffijt M.
        • Kenemans J.L.
        • Verbaten M.N.
        • van Engeland H.
        A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: Deficient inhibitory motor control?.
        J Abnorm Psychol. 2005; 114: 216-222
        • Chamberlain S.R.
        • Sahakian B.J.
        The neuropsychiatry of impulsivity.
        Curr Opin Psychiatry. 2007; 20: 255-261
        • Eagle D.M.
        • Bari A.
        • Robbins T.W.
        The neuropsychopharmacology of action inhibition: Cross-species translation of the stop-signal and go/no-go tasks.
        Psychopharmacol (Berl). 2008; 199: 439-456
        • Bari A.
        • Eagle D.M.
        • Mar A.C.
        • Robinson E.S.
        • Robbins T.W.
        Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats.
        Psychopharmacol (Berl). 2009; 205: 273-283
        • Chamberlain S.R.
        • Müller U.
        • Deakin J.B.
        • Corlett P.R.
        • Dowson J.
        • Cardinal R.N.
        • et al.
        Lack of deleterious effects of buspirone on cognition in healthy male volunteers.
        J Psychopharmacol (Oxford). 2007; 21: 210-215
        • Chamberlain S.R.
        • Hampshire A.
        • Müller U.
        • Rubia K.
        • Del Campo N.
        • Craig K.
        • et al.
        Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study.
        Biol Psychiatry. 2009; 65: 550-555
        • Ding Y.S.
        • Fowler J.
        New-generation radiotracers for nAChR and NET.
        Nucl Med Biol. 2005; 32: 707-718
        • Hannestad J.
        • Gallezot J.D.
        • Planeta-Wilson B.
        • Lin S.F.
        • Williams W.A.
        • van Dyck C.H.
        • et al.
        Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo.
        Biol Psychiatry. 2010; 68: 854-860
        • Ding Y.S.
        • Singhal T.
        • Planeta-Wilson B.
        • Gallezot J.D.
        • Nabulsi N.
        • Labaree D.
        • et al.
        PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S,S)-[(11)C]O-methylreboxetine and HRRT.
        Synapse. 2010; 64: 30-38
        • Takano A.
        • Varrone A.
        • Gulyás B.
        • Karlsson P.
        • Tauscher J.
        • Halldin C.
        Mapping of the norepinephrine transporter in the human brain using PET with (S,S)-[18F]FMeNER-D2.
        Neuroimage. 2008; 42: 474-482