Advertisement

Glutamatergic Gene Expression Is Specifically Reduced in Thalamocortical Projecting Relay Neurons in Schizophrenia

      Background

      Impairment of glutamate neurons that relay sensory and cognitive information from the medial dorsal thalamus to the dorsolateral prefrontal cortex and other cortical regions may contribute to the pathophysiology of schizophrenia. In this study, we have assessed the cell-specific expression of glutamatergic transcripts in the medial dorsal thalamus.

      Methods

      We used laser capture microdissection to harvest two populations of medial dorsal thalamic cells, one enriched with glutamatergic relay neurons and the other with gamma-aminobutyric acidergic neurons and astroglia, from postmortem brains of subjects with schizophrenia (n = 14) and a comparison group (n = 20). Quantitative polymerase chain reaction of extracted RNA was used to assay gene expression in the different cell populations.

      Results

      The transcripts encoding the ionotropic glutamate receptor subunits NR2D, GluR3, GluR6, GluR7, and the intracellular proteins GRIP1 and SynGAP1 were significantly decreased in relay neurons but not in the mixed glial and interneuron population in schizophrenia.

      Conclusions

      Our data suggest that reduced ionotropic glutamatergic expression occurs selectively in neurons, which give rise to the cortical projections of the medial dorsal thalamus in schizophrenia, rather than in thalamic cells that function locally. Our findings indicate that glutamatergic innervation is dysfunctional in the circuitry between the medial dorsal thalamus and cortex.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Olney J.W.
        • Farber N.B.
        Glutamate receptor dysfunction and schizophrenia.
        Arch Gen Psychiatry. 1995; 52: 998-1007
        • Coyle J.T.
        The glutamatergic dysfunction hypothesis for schizophrenia.
        Harv Rev Psychiatry. 1996; 3: 241-253
        • Javitt D.C.
        Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia.
        Hillside J Clin Psychiatry. 1987; 9: 12-35
        • Sodhi M.
        • Wood K.H.
        • Meador-Woodruff J.
        Role of glutamate in schizophrenia: Integrating excitatory avenues of research.
        Expert Rev Neurother. 2008; 8: 1389-1406
        • Luby E.D.
        • Cohen B.D.
        • Rosenbaum G.
        • Gottlieb J.S.
        • Kelley R.
        Study of a new schizophrenomimetic drug; Sernyl.
        AMA Arch Neurol Psychiatry. 1959; 81: 363-369
        • Rosenbaum G.
        • Cohen B.D.
        • Luby E.D.
        • Gottlieb J.S.
        • Yelen D.
        Comparison of sernyl with other drugs: Simulation of schizophrenic performance with sernyl, LSD-25, and amobarbital (Amytal) sodium; I.
        Arch Gen Psychiatry. 1959; 1: 651-656
        • Cohen B.D.
        • Rosenbaum G.
        • Luby E.D.
        • Gottlieb J.S.
        Comparison of phencyclidine hydrochloride (Sernyl) with other drugs. Simulation of schizophrenic performance with phencyclidine hydrochloride (Sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (Amytal) sodium; II. Symbolic and sequential thinking.
        Arch Gen Psychiatry. 1962; 6: 395-401
        • Lahti A.C.
        • Koffel B.
        • LaPorte D.
        • Tamminga C.A.
        Subanesthetic doses of ketamine stimulate psychosis in schizophrenia.
        Neuropsychopharmacology. 1995; 13: 9-19
        • Bartha R.
        • Williamson P.C.
        • Drost D.J.
        • Malla A.
        • Carr T.J.
        • Cortese L.
        • et al.
        Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 1997; 54: 959-965
        • Omori M.
        • Pearce J.
        • Komoroski R.A.
        • Griffin W.S.
        • Mrak R.E.
        • Husain M.M.
        • et al.
        In vitro 1H-magnetic resonance spectroscopy of postmortem brains with schizophrenia.
        Biol Psychiatry. 1997; 42: 359-366
        • Théberge J.
        • Al-Semaan Y.
        • Williamson P.C.
        • Menon R.S.
        • Neufeld R.W.
        • Rajakumar N.
        • et al.
        Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS.
        Am J Psychiatry. 2003; 160: 2231-2233
        • Deakin J.F.
        • Slater P.
        • Simpson M.D.
        • Gilchrist A.C.
        • Skan W.J.
        • Royston M.C.
        • et al.
        Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia.
        J Neurochem. 1989; 52: 1781-1786
        • Squires R.F.
        • Lajtha A.
        • Saederup E.
        • Palkovits M.
        Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: Is selective loss of glutamatergic neurons associated with major psychoses?.
        Neurochem Res. 1993; 18: 219-223
        • Ishimaru M.
        • Kurumaji A.
        • Toru M.
        Increases in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: Evidence for glutamate hypothesis.
        Biol Psychiatry. 1994; 35: 84-95
        • Breese C.R.
        • Freedman R.
        • Leonard S.S.
        Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers.
        Brain Res. 1995; 674: 82-90
        • Humphries C.
        • Mortimer A.
        • Hirsch S.
        • de Belleroche J.
        NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia.
        Neuroreport. 1996; 7: 2051-2055
        • Eastwood S.L.
        • Kerwin R.W.
        • Harrison P.J.
        Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-d-aspartate glutamate receptors within the medial temporal lobe in schizophrenia.
        Biol Psychiatry. 1997; 41: 636-643
        • Meador-Woodruff J.H.
        • Healy D.J.
        Glutamate receptor expression in schizophrenic brain.
        Brain Res Brain Res Rev. 2000; 31: 288-294
        • Sokolov B.P.
        Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of ”neuroleptic-free” schizophrenics: Evidence on reversible up-regulation by typical neuroleptics.
        J Neurochem. 1998; 71: 2454-2464
        • Gao X.M.
        • Sakai K.
        • Roberts R.C.
        • Conley R.R.
        • Dean B.
        • Tamminga C.A.
        Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: Effects of schizophrenia.
        Am J Psychiatry. 2000; 157: 1141-1149
        • Ibrahim H.M.
        • Hogg Jr, A.J.
        • Healy D.J.
        • Haroutunian V.
        • Davis K.L.
        • Meador-Woodruff J.H.
        Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia.
        Am J Psychiatry. 2000; 157: 1811-1823
        • Ohnuma T.
        • Tessler S.
        • Arai H.
        • Faull R.L.
        • McKenna P.J.
        • Emson P.C.
        Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus.
        Brain Res Mol Brain Res. 2000; 85: 24-31
        • Richardson-Burns S.M.
        • Haroutunian V.
        • Davis K.L.
        • Watson S.J.
        • Meador-Woodruff J.H.
        Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus.
        Biol Psychiatry. 2000; 47: 22-28
        • Benes F.M.
        • Todtenkopf M.S.
        • Kostoulakos P.
        GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives.
        Hippocampus. 2001; 11: 482-491
        • Dracheva S.
        • Marras S.A.
        • Elhakem S.L.
        • Kramer F.R.
        • Davis K.L.
        • Haroutunian V.
        N-methyl-d-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia.
        Am J Psychiatry. 2001; 158: 1400-1410
        • Meador-Woodruff J.H.
        • Davis K.L.
        • Haroutunian V.
        Abnormal kainate receptor expression in prefrontal cortex in schizophrenia.
        Neuropsychopharmacology. 2001; 24: 545-552
        • Hemby S.E.
        • Ginsberg S.D.
        • Brunk B.
        • Arnold S.E.
        • Trojanowski J.Q.
        • Eberwine J.H.
        Gene expression profile for schizophrenia: Discrete neuron transcription patterns in the entorhinal cortex.
        Arch Gen Psychiatry. 2002; 59: 631-640
        • Noga J.T.
        • Wang H.
        Further postmortem autoradiographic studies of AMPA receptor binding in schizophrenia.
        Synapse. 2002; 45: 250-258
        • Zavitsanou K.
        • Ward P.B.
        • Huang X.F.
        Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia.
        Neuropsychopharmacology. 2002; 27: 826-833
        • Harrison P.J.
        • Law A.J.
        • Eastwood S.L.
        Glutamate receptors and transporters in the hippocampus in schizophrenia.
        Ann N Y Acad Sci. 2003; 1003: 94-101
        • Lewis D.A.
        • Glantz L.A.
        • Pierri J.N.
        • Sweet R.A.
        Altered cortical glutamate neurotransmission in schizophrenia: Evidence from morphological studies of pyramidal neurons.
        Ann N Y Acad Sci. 2003; 1003: 102-112
        • Meador-Woodruff J.H.
        • Clinton S.M.
        • Beneyto M.
        • McCullumsmith R.E.
        Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia.
        Ann N Y Acad Sci. 2003; 1003: 75-93
        • Dracheva S.
        • McGurk S.R.
        • Haroutunian V.
        mRNA expression of AMPA receptors and AMPA receptor binding proteins in the cerebral cortex of elderly schizophrenics.
        J Neurosci Res. 2005; 79: 868-878
        • Gupta D.S.
        • McCullumsmith R.E.
        • Beneyto M.
        • Haroutunian V.
        • Davis K.L.
        • Meador-Woodruff J.H.
        Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia.
        Synapse. 2005; 57: 123-131
        • Kristiansen L.V.
        • Meador-Woodruff J.H.
        Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression.
        Schizophr Res. 2005; 78: 87-93
        • Mexal S.
        • Frank M.
        • Berger R.
        • Adams C.E.
        • Ross R.G.
        • Freedman R.
        • et al.
        Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers.
        Brain Res Mol Brain Res. 2005; 139: 317-332
        • Newell K.A.
        • Zavitsanou K.
        • Huang X.F.
        Ionotropic glutamate receptor binding in the posterior cingulate cortex in schizophrenia patients.
        Neuroreport. 2005; 16: 1363-1367
        • Beneyto M.
        • Kristiansen L.V.
        • Oni-Orisan A.
        • McCullumsmith R.E.
        • Meador-Woodruff J.H.
        Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders.
        Neuropsychopharmacology. 2007; 32: 1888-1902
        • Corti C.
        • Crepaldi L.
        • Mion S.
        • Roth A.L.
        • Xuereb J.H.
        • Ferraguti F.
        Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia.
        Biol Psychiatry. 2007; 62: 747-755
        • McCullumsmith R.E.
        • Kristiansen L.V.
        • Beneyto M.
        • Scarr E.
        • Dean B.
        • Meador-Woodruff J.H.
        Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder.
        Brain Res. 2007; 1127: 108-118
        • Lodge D.
        The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature.
        Neuropharmacology. 2009; 56: 6-21
        • Carlisle H.J.
        • Kennedy M.B.
        Spine architecture and synaptic plasticity.
        Trends Neurosci. 2005; 28: 182-187
        • Kennedy M.B.
        The postsynaptic density at glutamatergic synapses.
        Trends Neurosci. 1997; 20: 264-268
        • Goff D.C.
        • Coyle J.T.
        The emerging role of glutamate in the pathophysiology and treatment of schizophrenia.
        Am J Psychiatry. 2001; 158: 1367-1377
        • Eastwood S.L.
        • Burnet P.W.
        • Harrison P.J.
        GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: A reverse transcriptase-polymerase chain reaction (RT-PCR) study.
        Brain Res Mol Brain Res. 1997; 44: 92-98
        • Benes F.M.
        • Sorensen I.
        • Vincent S.L.
        • Bird E.D.
        • Sathi M.
        Increased density of glutamate-immunoreactive vertical processes in superficial laminae in cingulate cortex of schizophrenic brain.
        Cereb Cortex. 1992; 2: 503-512
        • Pakkenberg B.
        • Scheel-Krüger J.
        • Kristiansen L.V.
        Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loop.
        Acta Psychiatr Scand. 2009; 120: 345-354
        • Jones E.G.
        Cortical development and thalamic pathology in schizophrenia.
        Schizophr Bull. 1997; 23: 483-501
        • Ellison-Wright I.
        • Glahn D.C.
        • Laird A.R.
        • Thelen S.M.
        • Bullmore E.
        The anatomy of first-episode and chronic schizophrenia: An anatomical likelihood estimation meta-analysis.
        Am J Psychiatry. 2008; 165: 1015-1023
        • Szulc A.
        • Galinska B.
        • Tarasow E.
        • Dzienis W.
        • Kubas B.
        • Konarzewska B.
        • et al.
        The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients.
        Pharmacopsychiatry. 2005; 38: 214-219
        • Théberge J.
        • Bartha R.
        • Drost D.J.
        • Menon R.S.
        • Malla A.
        • Takhar J.
        • et al.
        Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers.
        Am J Psychiatry. 2002; 159: 1944-1946
        • Ettinger U.
        • Picchioni M.
        • Landau S.
        • Matsumoto K.
        • van Haren N.E.
        • Marshall N.
        • et al.
        Magnetic resonance imaging of the thalamus and adhesio interthalamica in twins with schizophrenia.
        Arch Gen Psychiatry. 2007; 64: 401-409
        • Byne W.
        • Buchsbaum M.S.
        • Mattiace L.A.
        • Hazlett E.A.
        • Kemether E.
        • Elhakem S.L.
        • et al.
        Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia.
        Am J Psychiatry. 2002; 159: 59-65
        • Kemether E.M.
        • Buchsbaum M.S.
        • Byne W.
        • Hazlett E.A.
        • Haznedar M.
        • Brickman A.M.
        • et al.
        Magnetic resonance imaging of mediodorsal, pulvinar, and centromedian nuclei of the thalamus in patients with schizophrenia.
        Arch Gen Psychiatry. 2003; 60: 983-991
        • Popken G.J.
        • Bunney Jr, W.E.
        • Potkin S.G.
        • Jones E.G.
        Subnucleus-specific loss of neurons in medial thalamus of schizophrenics.
        Proc Natl Acad Sci U S A. 2000; 97: 9276-9280
        • Young K.A.
        • Manaye K.F.
        • Liang C.
        • Hicks P.B.
        • German D.C.
        Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia.
        Biol Psychiatry. 2000; 47: 944-953
        • Cullen T.J.
        • Walker M.A.
        • Parkinson N.
        • Craven R.
        • Crow T.J.
        • Esiri M.M.
        • et al.
        A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia.
        Schizophr Res. 2003; 60: 157-166
        • Dorph-Petersen K.A.
        • Pierri J.N.
        • Sun Z.
        • Sampson A.R.
        • Lewis D.A.
        Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: Volume, neuron number, and cell types.
        J Comp Neurol. 2004; 472: 449-462
        • Young K.A.
        • Holcomb L.A.
        • Yazdani U.
        • Hicks P.B.
        • German D.C.
        Elevated neuron number in the limbic thalamus in major depression.
        Am J Psychiatry. 2004; 161: 1270-1277
        • Dracheva S.
        • Byne W.
        • Chin B.
        • Haroutunian V.
        Ionotropic glutamate receptor mRNA expression in the human thalamus: Absence of change in schizophrenia.
        Brain Res. 2008; 1214: 23-34
        • Watis L.
        • Chen S.H.
        • Chua H.C.
        • Chong S.A.
        • Sim K.
        Glutamatergic abnormalities of the thalamus in schizophrenia: A systematic review.
        J Neural Transm. 2008; 115: 493-511
        • Clinton S.M.
        • Meador-Woodruff J.H.
        Thalamic dysfunction in schizophrenia: Neurochemical, neuropathological, and in vivo imaging abnormalities.
        Schizophr Res. 2004; 69: 237-253
        • Harvey J.
        • Palmer M.J.
        • Irving A.J.
        • Clarke V.R.
        • Collingridge G.L.
        NMDA receptor dependence of mGlu-mediated depression of synaptic transmission in the CA1 region of the rat hippocampus.
        Br J Pharmacol. 1996; 119: 1239-1247
        • Purohit D.P.
        • Perl D.P.
        • Haroutunian V.
        • Powchik P.
        • Davidson M.
        • Davis K.L.
        Alzheimer disease and related neurodegenerative diseases in elderly patients with schizophrenia: A postmortem neuropathologic study of 100 cases.
        Arch Gen Psychiatry. 1998; 55: 205-211
        • Clinton S.M.
        • Meador-Woodruff J.H.
        Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder.
        Neuropsychopharmacology. 2004; 29: 1353-1362
        • Clinton S.M.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia.
        J Neurochem. 2006; 98: 1114-1125
        • Jones E.G.
        Functional subdivision and synaptic organization of the mammalian thalamus.
        Int Rev Physiol. 1981; 25: 173-245
        • Hirai T.
        • Jones E.G.
        Distribution of tachykinin- and enkephalin-immunoreactive fibers in the human thalamus.
        Brain Res Brain Res Rev. 1989; 14: 35-52
        • Schroeder A.
        • Mueller O.
        • Stocker S.
        • Salowsky R.
        • Leiber M.
        • Gassmann M.
        • et al.
        The RIN: An RNA integrity number for assigning integrity values to RNA measurements.
        BMC Mol Biol. 2006; 7: 3
        • Mengual L.
        • Burset M.
        • Marín-Aguilera M.
        • Ribal M.J.
        • Alcaraz A.
        Multiplex preamplification of specific cDNA targets prior to gene expression analysis by TaqMan Arrays.
        BMC Res Notes. 2008; 1: 21
        • Vandesompele J.
        • De Preter K.
        • Pattyn F.
        • Poppe B.
        • Van Roy N.
        • De Paepe A.
        • Speleman F.
        Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.
        Genome Biol. 2002; 3 (RESEARCH0034)
        • Graziano A.
        • Liu X.B.
        • Murray K.D.
        • Jones E.G.
        Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse.
        J Comp Neurol. 2008; 507: 1258-1276
        • Nahmani M.
        • Erisir A.
        VGluT2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex.
        J Comp Neurol. 2005; 484: 458-473
        • Antanitus D.S.
        • Choi B.H.
        • Lapham L.W.
        Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein.
        Brain Res. 1975; 89: 363-367
        • Kaufman D.L.
        • Houser C.R.
        • Tobin A.J.
        Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions.
        J Neurochem. 1991; 56: 720-723
        • Schmechel D.
        • Marangos P.J.
        • Zis A.P.
        • Brightman M.
        • Goodwin F.K.
        Brain endolases as specific markers of neuronal and glial cells.
        Science. 1978; 199: 313-315
        • McBain C.J.
        • Mayer M.L.
        N-methyl-D-aspartic acid receptor structure and function.
        Physiol Rev. 1994; 74: 723-760
        • Rumbaugh G.
        • Adams J.P.
        • Kim J.H.
        • Huganir R.L.
        SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons.
        Proc Natl Acad Sci U S A. 2006; 103: 4344-4351
        • Bickel S.
        • Javitt D.C.
        Neurophysiological and neurochemical animal models of schizophrenia: Focus on glutamate.
        Behav Brain Res. 2009; 204: 352-362
        • Nabeshima T.
        • Mouri A.
        • Murai R.
        • Noda Y.
        Animal model of schizophrenia: Dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine.
        Ann N Y Acad Sci. 2006; 1086: 160-168
        • Duncan E.J.
        • Szilagyi S.
        • Schwartz M.P.
        • Bugarski-Kirola D.
        • Kunzova A.
        • Negi S.
        • et al.
        Effects of D-cycloserine on negative symptoms in schizophrenia.
        Schizophr Res. 2004; 71: 239-248
        • Mohn A.R.
        • Gainetdinov R.R.
        • Caron M.G.
        • Koller B.H.
        Mice with reduced NMDA receptor expression display behaviors related to schizophrenia.
        Cell. 1999; 98: 427-436
        • Monyer H.
        • Sprengel R.
        • Schoepfer R.
        • Herb A.
        • Higuchi M.
        • Lomeli H.
        • et al.
        Heteromeric NMDA receptors: Molecular and functional distinction of subtypes.
        Science. 1992; 256: 1217-1221
        • Kuner T.
        • Schoepfer R.
        Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels.
        J Neurosci. 1996; 16: 3549-3558
        • Farber N.B.
        The NMDA receptor hypofunction model of psychosis.
        Ann N Y Acad Sci. 2003; 1003: 119-130
        • Barbon A.
        • Fumagalli F.
        • La Via L.
        • Caracciolo L.
        • Racagni G.
        • Riva M.A.
        • et al.
        Chronic phencyclidine administration reduces the expression and editing of specific glutamate receptors in rat prefrontal cortex.
        Exp Neurol. 2007; 208: 54-62

      Linked Article

      • Erratum
        Biological PsychiatryVol. 70Issue 11
        • Preview
          The rows of data in Table 2 in “Glutamatergic Gene Expression Is Specifically Reduced in Thalamocortical Projecting Relay Neurons in Schizophrenia” by Sodhi et al., published in Biological Psychiatry (2011: 70:646–654), were formatted and printed out of alignment. The corrected version of Table 2 is printed here.
        • Full-Text
        • PDF