Advertisement
Archival Report| Volume 70, ISSUE 4, P388-394, August 15, 2011

Download started.

Ok

Current Source Density Measures of Electroencephalographic Alpha Predict Antidepressant Treatment Response

      Background

      Despite recent success in pharmacologic treatment of depression, the inability to predict individual treatment response remains a liability. This study replicates and extends findings relating pretreatment electroencephalographic (EEG) alpha to treatment outcomes for serotonergic medications.

      Methods

      Resting EEG (eyes-open and eyes-closed) was recorded from a 67-electrode montage in 41 unmedicated depressed patients and 41 healthy control subjects. Patients were tested before receiving antidepressants including a serotonergic mode of action (selective serotonin reuptake inhibitor [SSRI], serotonin and norepinephrine reuptake inhibitor, or SSRI plus norepinephrine and dopamine reuptake inhibitor). EEG was quantified by frequency principal components analysis of spectra derived from reference-free current source density (CSD) waveforms, which sharpens and simplifies EEG topographies, disentangles them from artifact, and yields measures that more closely represent underlying neuronal current generators.

      Results

      Patients who did not respond to treatment had significantly less alpha CSD compared with responders or healthy control subjects, localizable to well-defined posterior generators. The alpha difference between responders and nonresponders was greater for eyes-closed than eyes-open conditions and was present across alpha subbands. A classification criterion based on the median alpha for healthy control subjects showed good positive predictive value (93.3) and specificity (92.3). There was no evidence of differential value for predicting response to an SSRI alone or dual treatment targeting serotonergic plus other monoamine neurotransmitters.

      Conclusions

      Findings confirm the value of EEG alpha amplitude as a viable predictor of antidepressant response and suggest that personalized treatments for depression may be identified using simple electrophysiologic CSD measures.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Niedermeyer E.
        Alpha rhythms as physiological and abnormal phenomena.
        Int J Psychophysiol. 1997; 26: 31-49
        • Ishii R.
        • Dziewas R.
        • Chau W.
        • Soros P.
        • Okamoto H.
        • Gunji A.
        • Pantev C.
        Current source density distribution of sleep spindles in humans as found by synthetic aperture magnetometry.
        Neurosci Lett. 2003; 340: 25-28
        • Cook I.A.
        • O'Hara R.
        • Uijtdehaage S.H.
        • Mandelkern M.
        • Leuchter A.F.
        Assessing the accuracy of topographic EEG mapping for determining local brain function.
        Electroencephalogr Clin Neurophysiol. 1998; 107: 408-414
        • Feige B.
        • Scheffler K.
        • Esposito F.
        • Di Salle F.
        • Hennig J.
        • Seifritz E.
        Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation.
        J Neurophysiol. 2005; 93: 2864-2872
        • Buzsaki G.
        The thalamic clock: Emergent network properties.
        Neuroscience. 1991; 41: 351-364
        • Lopes da Silva F.
        Neural mechanisms underlying brain waves: From neural membranes to networks.
        Electroencephalogr Clin Neurophysiol. 1991; 79: 81-93
        • Larson C.L.
        • Davidson R.J.
        • Abercrombie H.C.
        • Ward R.T.
        • Schaefer S.M.
        • Jackson D.C.
        • et al.
        Relations between PET-derived measures of thalamic glucose metabolism and EEG alpha power.
        Psychophysiology. 1998; 35: 162-169
        • Steriade M.
        Corticothalamic resonance, states of vigilance and mentation.
        Neuroscience. 2000; 101: 243-276
        • Bollimunta A.
        • Chen Y.
        • Schroeder C.E.
        • Ding M.
        Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques.
        J Neurosci. 2008; 28: 9976-9988
        • Pollock V.E.
        • Schneider L.S.
        Topographic electroencephalographic alpha in recovered depressed elderly.
        J Abnorm Psychol. 1989; 98: 268-273
        • Pollock V.E.
        • Schneider L.S.
        Topographic quantitative EEG in elderly subjects with major depression.
        Psychophysiology. 1990; 27: 438-444
        • Gotlib I.H.
        • Ranganath C.
        • Rosenfeld P.
        Frontal EEG alpha asymmetry, depression, and cognitive functioning.
        Cogn Emot. 1998; 12: 449-478
        • Henriques J.B.
        • Davidson R.J.
        Left frontal hypoactivation in depression.
        J Abnorm Psychol. 1991; 100: 535-545
        • Stewart J.L.
        • Bismark A.W.
        • Towers D.N.
        • Coan J.A.
        • Allen J.J.B.
        Resting frontal EEG asymmetry as an endophenotype for depression risk: Sex-specific patterns of frontal brain asymmetry.
        J Abnorm Psychol. 2010; 119: 502-512
        • Thibodeau R.
        • Jorgensen R.S.
        • Kim S.
        Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review.
        J Abnorm Psychol. 2006; 115: 715-729
        • Bruder G.E.
        • Fong R.
        • Tenke C.E.
        • Leite P.
        • Towey J.P.
        • Stewart J.E.
        • et al.
        Regional brain asymmetries in major depression with or without an anxiety disorder: A quantitative electroencephalographic study.
        Biol Psychiatry. 1997; 41: 939-948
        • Kentgen L.M.
        • Tenke C.E.
        • Pine D.S.
        • Fong R.
        • Klein R.G.
        • Bruder G.E.
        Electroencephalographic asymmetries in adolescents with major depression: Influence of comorbidity with anxiety disorders.
        J Abnorm Psychol. 2000; 109: 797-802
        • Reid S.A.
        • Duke L.M.
        • Allen J.J.B.
        Resting frontal electroencephalographic asymmetry in depression: Inconsistencies suggest the need to identify mediating factors.
        Psychophysiology. 1998; 35: 389-404
        • Stewart J.L.
        • Towers D.N.
        • Coan J.A.
        • Allen J.J.B.
        The oft-neglected role of parietal EEG asymmetry and risk for major depressive disorder.
        Psychophysiology. 2011; 48: 82-95
        • Ulrich G.
        • Renfordt E.
        • Frick K.
        The topographical distribution of alpha-activity in the resting EEG of endogenous-depressive inpatients with and without clinical-response to pharmacotherapy.
        Pharmacopsychiatry. 1986; 19: 272-273
        • Bruder G.E.
        • Sedoruk J.P.
        • Stewart J.W.
        • McGrath P.J.
        • Quitkin F.M.
        • Tenke C.E.
        Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: Pre- and post-treatment findings.
        Biol Psychiatry. 2008; 63: 1171-1177
        • Hagemann D.
        • Hewig J.
        • Seifert J.
        • Naumann E.
        • Bartussek D.
        The latent state-trait structure of resting EEG asymmetry: Replication and extension.
        Psychophysiology. 2005; 42: 740-752
        • Smit D.J.
        • Posthuma D.
        • Boomsma D.I.
        • Geus E.J.
        Heritability of background EEG across the power spectrum.
        Psychophysiology. 2005; 42: 691-697
        • Allen J.J.B.
        • Urry H.L.
        • Hitt S.K.
        • Coan J.A.
        The stability of resting frontal electroencephalographic asymmetry in depression.
        Psychophysiology. 2004; 41: 269-280
        • Nunez P.L.
        • Srinivasan R.
        Electric Fields of the Brain: The Neurophysics of EEG.
        in: 2nd ed. Oxford University Press, New York2006
        • Kayser J.
        • Tenke C.E.
        Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I.
        Clin Neurophysiol. 2006; 117: 348-368
        • Kayser J.
        • Tenke C.E.
        In search of the Rosetta Stone for scalp EEG: Converging on reference-free techniques.
        Clin Neurophysiol. 2010; 121: 1973-1975
        • Qin Y.
        • Xu P.
        • Yao D.
        A comparative study of different references for EEG default mode network: The use of the infinity reference.
        Clin Neurophysiol. 2010; 121: 1981-1991
        • Tenke C.E.
        • Kayser J.
        Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA).
        Clin Neurophysiol. 2005; 116: 2826-2846
        • Nicholson C.
        Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements.
        IEEE Trans Biomed Eng. 1973; 20: 278-288
        • Knott V.J.
        • Telner J.I.
        • Lapierre Y.D.
        • Browne M.
        • Horn E.R.
        Quantitative EEG in the prediction of antidepressant response to imipramine.
        J Affect Disord. 1996; 39: 175-184
        • Mulert C.
        • Juckel G.
        • Brunnmeier M.
        • Karch S.
        • Leicht G.
        • Mergl R.
        • et al.
        Prediction of treatment response in major depression: Integration of concepts.
        J Affect Disord. 2007; 98: 215-225
        • Pizzagalli D.
        • Pascual-Marqui R.D.
        • Nitschke J.B.
        • Oakes T.R.
        • Larson C.L.
        • Abercrombie H.C.
        • et al.
        Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis.
        Am J Psychiatry. 2001; 158: 405-415
        • Korb A.S.
        • Hunter A.M.
        • Cook I.A.
        • Leuchter A.F.
        Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression.
        Clin Neurophysiol. 2009; 120: 1313-1319
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview For DSM-IV Axis I Disorders-Nonpatient Edition (SCID-NP).
        in: Biometrics Research Department, New York State Psychiatric Institute, New York1996
        • Beck A.T.
        • Ward C.H.
        • Mendelson M.
        • Erbaugh J.
        An inventory for measuring depression.
        Arch Gen Psychiatry. 1961; 4: 561-571
        • Guy W.
        ECDEU Assessment Manual for Psychopharmacology: Publication ADM 76–338.
        in: U.S. Department of Health, Education, and Welfare, Washington, DC1976: 534-537
        • Hamilton M.
        A rating scale for depression.
        J Neurol Neurosurg Psychiatry. 1960; 23: 56-62
        • Pivik R.T.
        • Broughton R.J.
        • Coppola R.
        • Davidson R.J.
        • Fox N.
        • Nuwer M.R.
        Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts.
        Psychophysiology. 1993; 30: 547-558
        • Biosemi Inc.
        ActiveTwo - Multichannel, DC amplifier, 24-bit resolution, biopotential measurement system with active electrodes.
        (Accessed November 24, 2010)
        • Tenke C.E.
        • Kayser J.
        • Stewart J.W.
        • Bruder G.E.
        Novelty P3 reductions in depression: Characterization using principal components analysis (PCA) of current source density (CSD) waveforms.
        Psychophysiology. 2010; 47: 133-146
        • Kayser J.
        Polygraphic Recording Data Exchange—PolyRex.
        (Accessed November 24, 2010)
        • Kayser J.
        • Tenke C.E.
        Electrical distance as a reference-free measure for identifying artifacts in multichannel electroencephalogram (EEG) recordings.
        Psychophysiology. 2006; 43: S51
        • Perrin F.
        • Pernier J.
        • Bertrand O.
        • Echallier J.F.
        Spherical splines for scalp potential and current density mapping.
        Electroencephalogr Clin Neurophysiol. 1989; 72 ([Corrigenda EEG 02274 (1990): Electroencephalogr Clin Neurophysiol 76:565]): 184-187
        • Tenke C.E.
        • Kayser J.
        A convenient method for detecting electrolyte bridges in multichannel electroencephalogram and event-related potential recordings.
        Clin Neurophysiol. 2001; 112: 545-550
        • Kayser J.
        Current Source Density (CSD) Interpolation using Spherical Splines: CSD Toolbox.
        (Accessed November 24, 2010)
        • Neuroscan Inc
        SCAN 4.3 - Vol. II. EDIT 4.3 - Offline Analysis of Acquired Data: Document Number 2203, Revision D.
        Compumedics Neuroscan, El Paso, TX2003
        • Kayser J.
        • Tenke C.E.
        Optimizing PCA methodology for ERP component identification and measurement: Theoretical rationale and empirical evaluation.
        Clin Neurophysiol. 2003; 114: 2307-2325
        • Donchin E.
        • Heffley E.F.
        Multivariate analysis of event-related potential data: A tutorial review.
        in: Otto D.A. Multidisciplinary Perspectives in Event-Related Brain Potential Research: Proceedings of the Fourth International Congress on Event-Related Slow Potentials of the Brain (EPIC IV), Hendersonville North Carolina, April 4-10, 1976. The Office, Washington, DC1978: 555-572
        • Glaser E.M.
        • Ruchkin D.S.
        Principles of Neurobiological Signal Analysis.
        Academic Press, New York1976
        • Tenke C.E.
        • Kayser J.
        • Gates N.A.
        • Alschuler D.M.
        • Kroppmann C.J.
        • Fekri S.
        • et al.
        Auditory evoked potential (AEP) and EEG measures in depressed patients predict response to antidepressants.
        Biol Psychiatry. 2010; 67: 98S
        • SPSS, Inc.
        PASW Statistics 18 Command Syntax Reference.
        SPSS, Inc, Chicago2010
        • Hegerl U.
        • Juckel G.
        Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: A new hypothesis.
        Biol Psychiatry. 1993; 33: 173-187
        • Taylor B.P.
        • Bruder G.E.
        • Stewart J.W.
        • McGrath P.J.
        • Halperin J.
        • Ehrlichman H.
        • Quitkin F.M.
        Psychomotor slowing as a predictor of fluoxetine nonresponse in depressed outpatients.
        Am J Psychiatry. 2006; 163: 73-78
        • Cook I.A.
        • Leuchter A.F.
        • Witte E.
        • Abrams M.
        • Uijtdehaage S.H.
        • Stubbeman W.
        • et al.
        Neurophysiologic predictors of treatment response to fluoxetine in major depression.
        Psychiatry Res. 1999; 85: 263-273
        • Shackman A.J.
        • McMenamin B.W.
        • Maxwell J.S.
        • Greischar L.L.
        • Davidson R.J.
        Identifying robust and sensitive frequency bands for interrogating neural oscillations.
        Neuroimage. 2010; 51: 1319-1333
        • Bruder G.E.
        • Tenke C.E.
        • Warner V.
        • Nomura Y.
        • Grillon C.
        • Hille J.
        • et al.
        Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders.
        Biol Psychiatry. 2005; 57: 328-335
        • Jacobs B.L.
        • Azmitia E.C.
        Structure and function of the brain serotonin system.
        Physiol Rev. 1992; 72: 165-229
        • Heller W.
        • Etienne M.A.
        • Miller G.A.
        Patterns of perceptual asymmetry in depression and anxiety: Implications for neuropsychological models of emotion and psychopathology.
        J Abnorm Psychol. 1995; 104: 327-333