Advertisement
Archival Report| Volume 70, ISSUE 1, P73-80, July 01, 2011

Download started.

Ok

Impaired Hierarchical Control Within the Lateral Prefrontal Cortex in Schizophrenia

      Background

      In schizophrenia, disturbances of cognitive control have been associated with impaired functional specialization within the lateral prefrontal cortex (LPFC), but little is known about the functional interactions between specialized LPFC subregions. Here, we addressed this question with a recent model that describes the LPFC functioning as a cascade of control processes along a rostrocaudal axis, whereby anterior frontal regions influence the processing in posterior frontal regions to guide action selection on the basis of the temporal structure of information.

      Methods

      We assessed effective connectivity within the rostrocaudal axis of the LPFC by means of functional magnetic resonance imaging in 15 schizophrenic patients and 14 matched healthy control subjects with structural equation modeling and psychophysiological interactions.

      Results

      In healthy subjects, activity in the left caudal LPFC regions was under the influence of left rostral LPFC regions when controlling information conveyed by past events. By contrast, schizophrenic patients failed to demonstrate significant effective connectivity from rostral to caudal LPFC regions in both hemispheres.

      Conclusions

      The hierarchical control along the rostrocaudal axis of the LPFC is impaired in schizophrenia. This provides the first evidence of a top-down functional disconnection within the LPFC in this disorder. This disruption of top-down connectivity from rostral to caudal LPFC regions observed in patients might affect their ability to select the appropriate sets of stimulus-response associations in the caudal LPFC on the basis of information conveyed by past events. This impaired hierarchical control within the LPFC could result from poorly encoded contextual information due to abnormal computations in the caudal LPFC.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barch D.M.
        • Carter C.S.
        • Braver T.S.
        • Sabb F.W.
        • MacDonald III, A.
        • Noll D.C.
        • Cohen J.D.
        Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 280-288
        • MacDonald III, A.W.
        • Carter C.S.
        • Kerns J.G.
        • Ursu S.
        • Barch D.M.
        • Holmes A.J.
        • et al.
        Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis.
        Am J Psychiatry. 2005; 162: 475-484
        • Barbalat G.
        • Chambon V.
        • Franck N.
        • Koechlin E.
        • Farrer C.
        Organization of cognitive control within the lateral prefrontal cortex in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 377-386
        • Tan H.
        • Choo W.
        • Fones C.S.L.
        • Chee M.W.L.
        fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia.
        Am J Psychiatry. 2005; 162: 1849-1858
        • Tan H.
        • Sust S.
        • Buckholtz J.W.
        • Mattay V.S.
        • Meyer-Lindenberg A.
        • Egan M.F.
        • et al.
        Dysfunctional prefrontal regional specialization and compensation in schizophrenia.
        Am J Psychiatry. 2006; 163: 1969-1977
        • Cannon T.D.
        • Glahn D.C.
        • Kim J.
        • Van Erp T.G.M.
        • Karlsgodt K.
        • Cohen M.S.
        • et al.
        Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia.
        Arch Gen Psychiatry. 2005; 62: 1071-1080
        • Badre D.
        Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes.
        Trends Cogn Sci. 2008; 12: 193-200
        • Badre D.
        • D'Esposito M.
        Is the rostro-caudal axis of the frontal lobe hierarchical?.
        Nat Rev Neurosci. 2009; 10: 659-669
        • Koechlin E.
        • Summerfield C.
        An information theoretical approach to prefrontal executive function.
        Trends Cogn Sci. 2007; 11: 229-235
        • Koechlin E.
        • Ody C.
        • Kouneiher F.
        The architecture of cognitive control in the human prefrontal cortex.
        Science. 2003; 302: 1181-1185
        • Chambon V.
        • Franck N.
        • Koechlin E.
        • Fakra E.
        • Ciuperca G.
        • Azorin J.
        • Farrer C.
        The architecture of cognitive control in schizophrenia.
        Brain. 2008; 131: 962-970
        • Weiss A.P.
        • Schacter D.L.
        • Goff D.C.
        • Rauch S.L.
        • Alpert N.M.
        • Fischman A.J.
        • Heckers S.
        Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia.
        Biol Psychiatry. 2003; 53: 48-55
        • Heckers S.
        • Rauch S.L.
        • Goff D.
        • Savage C.R.
        • Schacter D.L.
        • Fischman A.J.
        • Alpert N.M.
        Impaired recruitment of the hippocampus during conscious recollection in schizophrenia.
        Nat Neurosci. 1998; 1: 318-323
        • Friston K.J.
        The disconnection hypothesis.
        Schizophr Res. 1998; 30: 115-125
        • Meyer-Lindenberg A.S.
        • Olsen R.K.
        • Kohn P.D.
        • Brown T.
        • Egan M.F.
        • Weinberger D.R.
        • Berman K.F.
        Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia.
        Arch Gen Psychiatry. 2005; 62: 379-386
        • Honey G.D.
        • Pomarol-Clotet E.
        • Corlett P.R.
        • Honey R.A.E.
        • McKenna P.J.
        • Bullmore E.T.
        • Fletcher P.C.
        Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function.
        Brain. 2005; 128: 2597-2611
        • Shannon C.
        A mathematical theory of communication.
        Bell Syst Tech J. 1948; 27 (623–656): 379-423
        • Kouneiher F.
        • Charron S.
        • Koechlin E.
        Motivation and cognitive control in the human prefrontal cortex.
        Nat Neurosci. 2009; 12: 939-945
        • Mueller R.O.
        Basic Principles of Structural Equation Modeling.
        Springer Texts in Statistics. Springer-Verlag, New York1996
        • Gitelman D.R.
        • Penny W.D.
        • Ashburner J.
        • Friston K.J.
        Modeling regional and psychophysiologic interactions in fMRI: The importance of hemodynamic deconvolution.
        Neuroimage. 2003; 19: 200-207
        • Stephan K.E.
        • Marshall J.C.
        • Friston K.J.
        • Rowe J.B.
        • Ritzl A.
        • Zilles K.
        • Fink G.R.
        Lateralized cognitive processes and lateralized task control in the human brain.
        Science. 2003; 301: 384-386
        • Badre D.
        • Hoffman J.
        • Cooney J.W.
        • D'Esposito M.
        Hierarchical cognitive control deficits following damage to the human frontal lobe.
        Nat Neurosci. 2009; 12: 515-522
        • Schlösser R.
        • Gesierich T.
        • Kaufmann B.
        • Vucurevic G.
        • Hunsche S.
        • Gawehn J.
        • Stoeter P.
        Altered effective connectivity during working memory performance in schizophrenia: A study with fMRI and structural equation modeling.
        Neuroimage. 2003; 19: 751-763
        • Schlösser R.
        • Gesierich T.
        • Kaufmann B.
        • Vucurevic G.
        • Stoeter P.
        Altered effective connectivity in drug free schizophrenic patients.
        Neuroreport. 2003; 14: 2233-2237
        • Ragland J.D.
        • Laird A.R.
        • Ranganath C.
        • Blumenfeld R.S.
        • Gonzales S.M.
        • Glahn D.C.
        Prefrontal activation deficits during episodic memory in schizophrenia.
        Am J Psychiatry. 2009; 166: 863-874
        • MacDonald III, A.W.
        • Carter C.S.
        Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia.
        J Abnorm Psychol. 2003; 112: 689-697
        • Barch D.M.
        The cognitive neuroscience of schizophrenia.
        Annu Rev Clin Psychol. 2005; 1: 321-353
        • Holmes A.J.
        • MacDonald III, A.
        • Carter C.S.
        • Barch D.M.
        • Andrew Stenger V.
        • Cohen J.D.
        Prefrontal functioning during context processing in schizophrenia and major depression: An event-related fMRI study.
        Schizophr Res. 2005; 76: 199-206
        • MacDonald III, A.W.
        • Pogue-Geile M.F.
        • Johnson M.K.
        • Carter C.S.
        A specific deficit in context processing in the unaffected siblings of patients with schizophrenia.
        Arch Gen Psychiatry. 2003; 60: 57-65
        • Delawalla Z.
        • Csernansky J.G.
        • Barch D.M.
        Prefrontal cortex function in nonpsychotic siblings of individuals with schizophrenia.
        Biol Psychiatry. 2008; 63: 490-497
        • Braver T.S.
        • Barch D.M.
        • Cohen J.D.
        Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function.
        Biol Psychiatry. 1999; 46: 312-328
        • Meyer-Lindenberg A.
        • Miletich R.S.
        • Kohn P.D.
        • Esposito G.
        • Carson R.E.
        • Quarantelli M.
        • et al.
        Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia.
        Nat Neurosci. 2002; 5: 267-271
        • Abi-Dargham A.
        • Mawlawi O.
        • Lombardo I.
        • Gil R.
        • Martinez D.
        • Huang Y.
        • et al.
        Prefrontal dopamine D1 receptors and working memory in schizophrenia.
        J Neurosci. 2002; 22: 3708-3719
        • Braver T.S.
        • Cohen J.D.
        Dopamine, cognitive control, and schizophrenia: The gating model.
        Prog Brain Res. 1999; 121: 327-349
        • Swerdlow N.R.
        • Geyer M.A.
        Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia.
        Schizophr Bull. 1998; 24: 285-301
        • Ranganath C.
        • Minzenberg M.J.
        • Ragland J.D.
        The cognitive neuroscience of memory function and dysfunction in schizophrenia.
        Biol Psychiatry. 2008; 64: 18-25
        • Henson R.N.
        • Rugg M.D.
        • Shallice T.
        • Josephs O.
        • Dolan R.J.
        Recollection and familiarity in recognition memory: An event-related functional magnetic resonance imaging study.
        J Neurosci. 1999; 19: 3962-3972
        • Henson R.N.
        • Rugg M.D.
        • Shallice T.
        • Dolan R.J.
        Confidence in recognition memory for words: Dissociating right prefrontal roles in episodic retrieval.
        J Cogn Neurosci. 2000; 12: 913-923
        • Bunge S.A.
        • Burrows B.
        • Wagner A.D.
        Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval.
        Brain Cogn. 2004; 56: 141-152
        • Velanova K.
        • Jacoby L.L.
        • Wheeler M.E.
        • McAvoy M.P.
        • Petersen S.E.
        • Buckner R.L.
        Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval.
        J Neurosci. 2003; 23: 8460-8470
        • Sakai K.
        • Passingham R.E.
        Prefrontal interactions reflect future task operations.
        Nat Neurosci. 2003; 6: 75-81
        • Sakai K.
        • Rowe J.B.
        • Passingham R.E.
        Active maintenance in prefrontal area 46 creates distractor-resistant memory.
        Nat Neurosci. 2002; 5: 479-484
        • Fletcher P.C.
        • Henson R.N.
        Frontal lobes and human memory: Insights from functional neuroimaging.
        Brain. 2001; 124: 849-881
        • Baddeley A.
        The episodic buffer: A new component of working memory?.
        Trends Cogn Sci. 2000; 4: 417-423
        • Baddeley A.
        • Della Sala S.
        Working memory and executive control.
        Philos Trans R Soc Lond B Biol Sci. 1996; 351 (discussion:1403–1404): 1397-1403
        • Burglen F.
        • Marczewski P.
        • Mitchell K.J.
        • van der Linden M.
        • Johnson M.K.
        • Danion J.
        • Salamé P.
        Impaired performance in a working memory binding task in patients with schizophrenia.
        Psychiatry Res. 2004; 125: 247-255
        • Rizzo L.
        • Danion J.M.
        • van der Linden M.
        • Grangé D.
        Patients with schizophrenia remember that an event has occurred, but not when.
        Br J Psychiatry. 1996; 168: 427-431
        • Jensen J.E.
        • Miller J.
        • Williamson P.C.
        • Neufeld R.W.J.
        • Menon R.S.
        • Malla A.
        • et al.
        Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla.
        Psychiatry Res. 2006; 146: 127-135
        • Highley J.R.
        • Walker M.A.
        • Esiri M.M.
        • McDonald B.
        • Harrison P.J.
        • Crow T.J.
        Schizophrenia and the frontal lobes: Post-mortem stereological study of tissue volume.
        Br J Psychiatry. 2001; 178: 337-343
        • Andreasen N.C.
        The Scale for the Assessment of Positive Symptoms (SAPS).
        University of Iowa Press, Iowa City, Iowa1984
        • Andreasen N.C.
        The Scale for the Assessment of Negative Symptoms (SANS).
        University of Iowa Press, Iowa City, Iowa1983
        • Talairach J.
        • Tournoux P.
        Co-Planar Stereotaxic Atlas of the Human Brain.
        Thieme Medical Publishers, New York, New York1988