Advertisement

Mapping Repetition Suppression of the N100 Evoked Response to the Human Cerebral Cortex

      Background

      Repetition suppression (RS) phenomena, such as those observed using paired-identical-stimulus (S1–S2) paradigms, likely reflect adaptive functions such as habituation and, more specifically, sensory gating.

      Methods

      To better characterize the neural networks underlying RS, we analyzed auditory S1–S2 data from electrodes placed on the cortices of 64 epilepsy patients who were being evaluated for surgical therapy. We identified regions with maximal amplitude responses to S1 (i.e., stimulus registration regions), regions with maximal suppression of responses to S2 relative to S1 (i.e., RS), and regions with no or minimal RS.

      Results

      Auditory perceptual regions, such as the superior temporal gyri, were shown to have significant initial registration activity (i.e., strong response to S1). Several prefrontal, cingulate, and parietal lobe regions were found to exhibit stronger RS than those recorded from the auditory perceptual areas.

      Conclusions

      The data strongly suggest that the neural network underlying repetition suppression may include regions not previously thought to be involved, such as the parietal and cingulate cortexes. In addition, the data also support the notion that the initial response to stimuli and the ability to suppress the stimuli if repeated are two separate, but likely related, functions.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Venables P.
        Input dysfunction in schizophrenia.
        in: Maher B.A. Progress in Experimental Personality Research. Academic Press, Orlando, FL1964: 1-47
        • Eisentein E.M.
        • Eisenstein D.
        A behavioral homeostasis theory of habituation and sensitization; further developments and predictions.
        Rev Neurosci. 2006; 17: 533-557
        • Cromwell H.C.
        • Mears R.P.
        • Wan L.
        • Boutros N.N.
        Sensory gating: A translational effort from basic to clinical science.
        Clin EEG Neurosci. 2008; 39: 1-4
        • Roemer R.
        • Shagass C.
        • Teyler T.J.
        Do human evoked potentials habituate?.
        in: Peeke H.V.S. Petrinovich L. Habituation, Sensitization and Behavior. Academic Press, San Diego, CA1984: 325-346
        • Davis M.
        • Heninger G.R.
        Comparison of response plasticity between the eye-blink and the vertex potential in humans.
        Electroencephalogr Clin Neurophysiol. 1972; 33: 283-293
        • Hsieh M.H.
        • Liu K.
        • Liu S.K.
        • Chiu M.J.
        • Hwu H.G.
        • Chen A.C.
        Memory impairment and auditory evoked potential gating deficit in schizophrenia.
        Psychol Res. 2004; 130: 161-169
        • Brockhaus-Dumke A.
        • Schultze-Lutter F.
        • Mueller R.
        • Tendolkar I.
        • Bechdolf A.
        • Pukrop R.
        Sensory-gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode and chronic patients.
        Biol Psych. 2008; 64: 376-384
        • Boutros N.N.
        • Brockhaus-Dumke A.
        • Gjini K.
        • Vedeniapin A.
        • Elfakhani M.
        • Burroughs S.
        • Keshavan M.
        Sensory-gating deficit of the N100 mid-latency auditory evoked potential in medicated schizophrenia patients.
        Schizophr Res. 2009; 113: 339-346
        • Patterson J.V.
        • Hetrick W.P.
        • Boutros N.N.
        • Jin Y.
        • Potkin S.
        • Sandman C.
        • Bunney Jr, W.E.
        P50 sensory gating ratios in schizophrenics and controls: A review and data analysis.
        Psychol Res. 2008; 158: 226-247
        • Adler L.E.
        • Pachtman E.
        • Franks R.D.
        • Pecevich M.
        • Waldo M.C.
        • Freedman R.
        Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia.
        Biol Psychiatry. 1982; 17: 639-654
        • Siegel C.
        • Waldo M.
        • Mizner G.
        • Adler L.E.
        • Freedman R.
        Deficits in sensory gating in schizophrenic patients and their relatives.
        Arch Gen Psychiatry. 1984; 41: 607-612
        • Franks R.
        • Adler L.
        • Waldo M.
        • Alpert J.
        • Freedman R.
        Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia.
        Biol Psychiatry. 1983; 18: 989-1005
        • Boutros N.N.
        • Belger A.
        Midlatency evoked potentials: Attenuation and augmentation reflect different aspects of sensory gating.
        Biol Psychiatry. 1999; 45: 917-922
        • Grunwald T.
        • Boutros N.N.
        • Pezer N.
        • von Oertzen T.
        • Fernandez G.
        • Schaller C.
        • Elger C.E.
        Neural substrates of sensory gating within the human brain.
        Biol Psychiatry. 2003; 53: 511-519
        • Buchsbaum M.S.
        The middle evoked response components and schizophrenia.
        Schizophr Bulletin. 1977; 3: 93-104
        • Boutros N.N.
        • Korzyukov O.
        • Jansen B.
        • Feingold A.
        • Bell M.
        Sensory-gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients.
        Psychol Res. 2004; 126: 203-215
        • Freedman R.
        • Adler L.E.
        • Myles-Worsley M.
        • Nagamoto H.T.
        • Miller C.
        • Kisley M.
        • et al.
        Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenia and normal subjects.
        Arch Gen Psychiatry. 1996; 53: 1114-1121
        • Moxon K.A.
        • Gerhardt G.A.
        • Gulinello M.
        • Adler L.E.
        Inhibitory control of sensory gating in a computer model of the CA3 region of the hippocampus.
        Biol Cybern. 2003; 88: 247-264
        • Smith D.
        • Boutros N.
        • Schwarzkopf S.
        Reliability of P50 auditory event-related potential indices of sensory gating.
        Psychophysiology. 1994; 31: 495-502
        • Rentzsch J.
        • Jockers-Scherübl M.C.
        • Boutros N.N.
        • Gallinat J.
        Test–retest reliability of P50, N100 and P200 auditory SG in healthy subjects.
        Int J Psychophysiol. 2008; 67: 81-90
        • Spencer S.S.
        • Sperling M.R.
        • Shewmon D.A.
        Intracranial electrodes.
        in: Engel J. Pedley T.A. Epilepsy: A Comprehensive Textbook. Lippincott-Raven, New York1997: 607-612
        • Kral T.
        • Clusmann H.
        • Urbach J.
        • Schramm J.
        • Elger C.E.
        • Kurthen M.
        • Grunwald T.
        Preoperative evaluation for epilepsy surgery Bonn: Algorithm.
        Zentralblatt für Neurochirurgie. 2002; 63: 106-110
        • Boutros N.N.
        • Trautner P.
        • Rosburg T.
        • Korzyukov O.
        • Grunwald T.
        • Schaller C.
        • et al.
        Sensory Gating in the Human hippocampal and rhinal Regions.
        Clin Neurophysiol. 2005; 116: 1967-1974
        • Zouridakis G.
        • Boutros N.N.
        Stimulus parameter effects on the P50 evoked response.
        Biol Psychiatry. 1992; 32 ([Brief report]): 839-841
        • Kurthen M.
        • Trautner P.
        • Rosburg T.
        • Grunwald T.
        • Dietl T.
        • Kühn K.U.
        • et al.
        Towards a functional topography of sensory gating areas: Invasive P50 recording and electrical stimulation mapping in epilepsy surgery candidates.
        Psychiatry Res. 2007; 155: 121-133
        • Behrens E.
        • Zentner J.
        • van Roost D.
        • Hufnagel A.
        • Elger C.E.
        • Schramm J.
        Subdural and depth electrodes in the presurgical evaluation of epilepsy.
        Acta Neurochir. 1994; 128: 84-87
        • Boutros N.N.
        • Korzyukov O.
        • Oliwa G.
        • Feingold A.
        • Campbell D.
        • McClain-Furmanski D.
        • et al.
        Morphological and latency abnormalities of the mid-latency auditory evoked responses in schizophrenia: A preliminary report.
        Schizophr Res. 2004; 70: 303-313
        • Pascual-Marqui R.D.
        • Michel C.M.
        • Lehmann D.
        Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain.
        Int J Psychophysiol. 1994; 18: 49-65
        • Acar Z.A.
        • Makeig S.
        • Worrell G.
        Head modeling and cortical source localization in epilepsy.
        Conf Proc IEEE Eng Med Biol Soc. 2008; 2008: 3763-3766
        • Fuchs M.
        • Wagner M.
        • Kastner J.
        Development of volume conductor and source models to localize epileptic foci.
        J Clin Neurophysiol. 2007; 24: 101-119
        • Korzyukov O.
        • Asano E.
        • Gumenyuk V.
        • Juhász C.
        • Wagner M.
        • Rothermel R.D.
        • Chugani H.T.
        Intracranial recording and source localization of auditory brain responses elicited at the 50 ms latency in three children aged from 3 to 16 years.
        Brain Topogr. 2009; 22: 166-175
        • Eickhoff S.B.
        • Laird A.R.
        • Grefkes C.
        • Wang L.E.
        • Zilles K.
        • Fox P.T.
        Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty.
        Hum Brain Map. 2009; 30: 2907-2926
        • Laird A.R.
        • Eickhoff S.B.
        • Li K.
        • Robin D.A.
        • Glahn D.C.
        • Fox P.T.
        Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling.
        J Neurosci. 2009; 29: 14496-14505
        • Laird A.R.
        • Eickhoff S.B.
        • Kurth F.
        • Fox P.M.
        • Uecker A.M.
        • Turner J.A.
        • et al.
        ALE meta-analysis workflows via the brainmap database: Progress towards a probabilistic functional brain atlas.
        Front Neuroinformatics. 2009; 3: 23
        • Näätänen R.
        • Picton T.W.
        The N1 wave of the human electric and magnetic response to sound.
        Psychophysiology. 1987; 24: 375-425
        • Giard M.H.
        • Perrin F.
        • Echallier J.F.
        • Thévenet M.
        • Froment J.C.
        • Pernier J.
        Dissociation of temporal and frontal components in the human auditory N1 wave: A scalp current density and dipole model analysis.
        Electroencephalogr Clin Neurophysiol. 1994; 92: 238-252
        • Weisser R.
        • Weisbrod M.
        • Roehrig M.
        • Rupp A.
        • Schroeder J.
        • Scherg M.
        Is frontal lobe involved in the generation of auditory?.
        Neuroreport. 2001; 12 (P50): 3303-3307
        • Weiland B.J.
        • Boutros N.N.
        • Moran J.M.
        • Tepley N.
        • Bowyer S.M.
        Evidence for a frontal cortex role in mediating both auditory and somatosensory habituation: A MEG study.
        Neuroimage. 2008; 42: 827-835
        • Fuerst D.R.
        • Gallinat J.
        • Boutros N.N.
        Range of sensory gating values and test-retest reliability in normal subjects.
        Psychophysiology. 2007; 44: 620-626
        • Atchley W.R.
        • Gaskins C.T.
        • Anderson D.
        Statistical properties of ratios.
        System Zool. 1976; 25: 127-148
        • Sable J.J.
        • Low K.A.
        • Maclin E.L.
        • Fabiani M.
        • Gratton G.
        Latent inhibition mediates N1 attenuation to repeating sounds.
        Psychophysiology. 2004; 41: 636-642
        • Budd T.W.
        • Barry R.J.
        • Gordon E.
        • Rennie C.
        • Michie P.T.
        Decrement of the N1 auditory event-related potential with stimulus repetition: Habituation vs. refractoriness.
        Int J Psychophys. 1998; 31: 51-86
        • Hanlon F.M.
        • Miller G.A.
        • Thoma R.J.
        • Irwin J.
        • Jones A.
        • Moses S.M.
        • et al.
        Distinct M50 and M100 auditory gating deficits in schizophrenia.
        Psychophysiology. 2005; 42: 417-427
        • Gjini K.
        • Arfken C.
        • Boutros N.N.
        Relationships between sensory “gating out” and sensory “gating in” of auditory evoked potentials in schizophrenia: Preliminary results.
        Schizophr Res. 2010; 121: 139-145
        • Krause M.
        • Hofffmann W.E.
        • Hajos M.
        Auditory sensory gating in hippocampus and reticular thalamic neurons in anesthetized rats.
        Biol Psychiatry. 2003; 53: 244-253
        • Stains W.R.
        • Black S.E.
        • Graham S.J.
        • McIlroy W.E.
        Somatosensory gating and recovery from stroke involving the thalamus.
        Stroke. 2002; 33: 2642-2651
        • Cromwell H.C.
        • Anstrom K.
        • Azarov A.
        • Woodward D.J.
        Auditory inhibitory gating in the amygdale: Single-unit analysis in the behaving rat.
        Brain Res. 2005; 1043: 12-23
        • Cromwell H.C.
        • Woodward D.J.
        Inhibitory gating of single unit activity in the amygdale: Effects of ketamine, haloperidol, or nicotine.
        Biol Psychiatry. 2007; 61: 880-889
        • Boutros N.N.
        • Mears R.
        • Pflieger P.E.
        • Moxon K.A.
        • Ludowig E.
        • Rosburg T.
        Sensory gating in the human hippocampal and rhinal regions: Regional differences.
        Hippocampus. 2008; 18: 310-316
        • Rosburg T.
        • Trautner P.
        • Ludowig E.
        • Helmstaedter C.
        • Bien C.G.
        • Elger C.E.
        • Boutros N.N.
        Sensory gating in epilepsy-effects of lateralization of hippocampal sclerosis.
        Clin Neurophysiol. 2008; 119: 1310-1319
        • Boutros N.N.
        • Trautner P.
        • Rosburg T.
        • Korzyukov O.
        • Grunwald T.
        • Schaller C.
        • et al.
        Mid-latency auditory evoked responses and sensory gating in focal epilepsy.
        J Neuropsychiatry Clin Neurosci. 2006; 18: 409-416