Advertisement

Abnormalities of Neuronal Oscillations and Temporal Integration to Low- and High-Frequency Auditory Stimulation in Schizophrenia

      Background

      Electroencephalography and magnetoencephalography studies indicate among schizophrenia patients (SZ) abnormal, often reduced, entrained steady-state (aSSR) and transient (N100/M100) neural responses to auditory stimuli. We complement this literature by focusing analyses on auditory cortices, assessing a wide range of stimulation frequencies with long driving periods and evaluating relationships between aSSR and M100 reductions in SZ.

      Methods

      Seventeen SZ and 17 healthy subjects (H) participated. Stimuli were 1500 msec binaural broadband noise sequences modulated at 5, 20, 40, 80, or 160 Hz. Magnetoencephalography data were collected and co-registered with structural magnetic resonance images. The aSSRs and M100s projected into brain space were analyzed as a function of hemisphere, stimulus density, and time.

      Results

      For aSSR, SZ displayed weaker entrainment bilaterally at low (5-Hz) and high (80-Hz) modulation frequencies. To 40-Hz stimuli, SZ showed weaker entrainment only in right auditory cortex. For M100, while responses for H increased linearly with stimulus density, this effect was weaker or absent in SZ. A principal components analysis of SZ deficits identified low (5-Hz entrainment and M100) and high (40- to 80-Hz entrainment) frequency components. Discriminant analysis indicated that the low-frequency component uniquely differentiated SZ from H. The high-frequency component correlated with negative symptoms among SZ.

      Conclusions

      The SZ auditory cortices were unable to 1) generate healthy levels of theta and high gamma band (80-Hz) entrainment (aSSR), and 2) augment transient responses (M100s) to rapidly presented auditory information (an index of temporal integration). Only the latter was most apparent in left hemisphere and may reflect a prominent neurophysiological deficit in schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rosburg T.
        • Boutros N.N.
        • Ford J.M.
        Reduced auditory evoked potential component N100 in schizophrenia—a critical review.
        Psychiatry Res. 2008; 161: 259-274
        • Brenner C.A.
        • Krishnan G.P.
        • Vohs J.L.
        • Ahn W.Y.
        • Hetrick W.P.
        • Morzorati S.L.
        • O'Donnell B.F.
        Steady state responses: Electrophysiological assessment of sensory function in schizophrenia.
        Schizophr Bull. 2009; 35: 1065-1077
        • Ross B.
        • Picton T.W.
        • Pantev C.
        Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field.
        Hear Res. 2002; 165: 68-84
        • Gutschalk A.
        • Mase R.
        • Roth R.
        • Ille N.
        • Rupp A.
        • Hähnel S.
        • et al.
        Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex.
        Clin Neurophysiol. 1999; 110: 856-868
        • Hari R.
        • Hamalainen M.
        • Joutsiniemi S.L.
        Neuromagnetic steady-state responses to auditory stimuli.
        J Acoust Soc Am. 1989; 86: 1033-1039
        • Santarelli R.
        • Conti G.
        Generation of auditory steady-state responses: Linearity assessment.
        Scand Audiol Suppl. 1999; 51: 23-32
        • Whittington M.A.
        • Traub R.D.
        • Jefferys J.G.R.
        Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.
        Nature. 1995; 373: 612-615
        • Bacci A.
        • Hueuenard J.
        Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons.
        Neuron. 2006; 49: 119-130
        • Gonzalez-Burgos G.
        • Lewis D.A.
        GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia.
        Schizophr Bull. 2008; 34: 944-961
        • Bartos M.
        • Vida I.
        • Jonas P.
        Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.
        Nat Rev Neurosci. 2007; 8: 45-56
        • Yvert B.
        • Fischer C.
        • Bertrand O.
        • Pernier J.
        Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models.
        Neuroimage. 2005; 28: 140-153
        • Javitt D.C.
        Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia.
        Audiol Neurootol. 2000; 5: 207-215
        • Barth D.S.
        • Di S.
        The functional anatomy of middle latency auditory evoked potentials.
        Brain Res. 1991; 565: 109-115
        • Naatanen R.
        • Picton T.
        The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure.
        Psychophysiology. 1987; 24: 375-425
        • Ehlers C.L.
        • Kaneko W.M.
        • Wall T.L.
        • Chaplin R.I.
        Effects of dizocilpine (MK-801) and ethanol on the EEG and event-related potentials (ERPS) in rats.
        Neuropharmacology. 1992; 31: 369-378
        • Ehrlichman R.S.
        • Gandal M.J.
        • Maxwell C.R.
        • Lazarewicz M.T.
        • Finkel L.H.
        • Contreras D.
        • et al.
        N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia.
        Neuroscience. 2009; 158: 705-712
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Picton T.W.
        • John M.S.
        • Dimitrijevic A.
        • Purcell D.
        Human auditory steady-state responses.
        Int J Audiol. 2003; 44: 177-219
        • Brenner C.A.
        • Sporns O.
        • Lysaker P.H.
        • O'Donnell B.F.
        EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder.
        Am J Psychiatry. 2003; 160: 2238-2240
        • Teale P.
        • Collins D.
        • Maharajh K.
        • Rojas D.C.
        • Kronberg E.
        • Reite M.
        Cortical source estimates of gamma band amplitude and phase are different in schizophrenia.
        Neuroimage. 2008; 42: 1481-1489
        • Krishnan G.P.
        • Hetrick W.P.
        • Brenner C.A.
        • Shekhar A.
        • Steffens A.N.
        • O'Donnell B.F.
        Steady state and induced auditory gamma deficits in schizophrenia.
        Neuroimage. 2009; 47: 1711-1719
        • Spencer K.M.
        • Salisbury D.F.
        • Shenton M.E.
        • McCarley R.W.
        Gamma-band auditory steady-state responses are impaired in first episode psychosis.
        Biol Psychiatry. 2008; 64: 369-375
        • Light G.A.
        • Hsu J.L.
        • Hsieh M.H.
        • Meyer-Gomes K.
        • Sprock J.
        • Swerdlow N.R.
        • Braff D.L.
        Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients.
        Biol Psychiatry. 2006; 60: 1231-1240
        • Spencer K.M.
        • Niznikiewicz M.A.
        • Nestor P.G.
        • Shenton M.E.
        • McCarley R.W.
        Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia.
        BMC Neurosci. 2009; 10: 85
        • Vierling-Claassen D.
        • Siekmeier P.
        • Stufflebeam S.
        • Kopell N.
        Modeling GABA alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment.
        J Neurophysiol. 2008; 99: 2656-2671
        • Kwon J.S.
        • O'Donnell B.F.
        • Wallenstein G.V.
        • Greene R.W.
        • Hirayasu Y.
        • Nestor P.G.
        • et al.
        Gamma frequency range abnormalities to auditory stimulation in schizophrenia.
        Arch Gen Psychiatry. 1999; 56: 1001-1005
        • Teale P.
        • Carlson J.
        • Rojas D.
        • Reite M.
        Reduced laterality of the source locations for generators of the auditory steady-state field in schizophrenia.
        Biol Psychiatry. 2003; 54: 1149-1153
        • Hong L.E.
        • Summerfelt A.
        • McMahon R.
        • Adami H.
        • Francis G.
        • Elliott A.
        • et al.
        Evoked gamma band synchronization and the liability for schizophrenia.
        Schizophr Res. 2004; 70: 293-302
        • Forss N.
        • Makela J.P.
        • McEvoy L.
        • Hari R.
        Temporal integration and oscillatory responses of the human auditory cortex revealed by evoked magnetic fields to click trains.
        Hear Res. 1993; 68: 89-96
        • Gilmore C.S.
        • Clementz B.A.
        • Buckley P.F.
        Rate of stimulation affects schizophrenia-normal differences on the N1 auditory-evoked potential.
        Neuroreport. 2004; 18: 2713-2717
        • Lu B.Y.
        • Edgar J.C.
        • Jones A.P.
        • Smith A.K.
        • Huang M.X.
        • Miller G.A.
        • Canive J.M.
        Improved test-retest reliability of 50-ms paired-click auditory gating using magnetoencephalography source modeling.
        Psychophysiology. 2007; 44: 86-90
        • Nurnberger Jr, J.I.
        • Blehar M.C.
        • Kaufmann C.A.
        • York-Cooler C.
        • Simpson S.G.
        • Harkavy-Friedman J.
        • et al.
        Diagnostic interview for genetic studies.
        Arch Gen Psychiatry. 1994; 51: 849-859
        • Andreasen N.C.
        Scale for the Assessment of Negative Symptoms (SANS).
        University of Iowa, Iowa City1981
        • Andreasen N.C.
        Scale for the Assessment of Positive Symptoms (SAPS).
        University of Iowa, Iowa City1983
        • Overall J.E.
        • Gorham D.R.
        The brief psychiatric rating scale.
        Psychol Rep. 1962; 10: 799-812
        • Delorme A.
        • Makeig S.
        EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
        J Neurosci Methods. 2004; 134: 9-21
        • Victor J.D.
        • Mast J.
        A new statistic for steady-state evoked potentials.
        Electroencephalogr Clin Neurophysiol. 1991; 78: 378-388
        • Pfurtscheller G.
        • Cooper R.
        Frequency dependence of the transmission of the EEG from cortex to scalp.
        Electroencephalogr Clin Neurophysiol. 1975; 38: 93-96
        • Moratti S.
        • Clementz B.A.
        • Gao Y.
        • Ortiz T.
        • Keil A.
        Neural mechanisms of evoked oscillations: Stability and interaction with transient events.
        Hum Brain Mapp. 2007; 28: 1318-1333
        • Hamm J.P.
        • Dyckman K.A.
        • Ethridge L.E.
        • McDowell J.E.
        • Clementz B.A.
        Preparatory activations across a distributed cortical network determine production of express saccades in humans.
        J Neurosci. 2010; 30: 7350-7357
        • Clementz B.A.
        • Wang J.
        • Keil A.
        Normal electrocortical facilitation but abnormal target identification during visual sustained attention in schizophrenia.
        J Neurosci. 2009; 28: 13411-13418
        • Hämäläinen M.S.
        • Ilmoniemi R.J.
        Interpreting magnetic fields of the brain: Minimum norm estimates.
        Med Biol Eng Comput. 1994; 32: 35-42
        • Cox L.A.
        Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.
        Environ Health Perspect. 1996; 104: 1413-1429
        • Mauchly J.W.
        Significance test for sphericity of a normal n-variate distribution.
        Ann Math Stat. 1940; 11: 204-209
        • Dien J.
        The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data.
        J Neurosci Methods. 2010; 187: 138-145
        • Gorsuch R.L.
        Factor Analysis.
        2nd ed. Erlbaum, Hillsdale, NJ1983
        • Kaiser H.F.
        The application of electronic computers to factor analysis.
        Educ Psychol Meas. 1960; 20: 141-151
        • Lautenschlager G.J.
        A comparison of alternatives to conducting Monte Carlo analyses for determining parallel analysis criteria.
        Multivariate Behav Res. 1989; 24: 365-395
        • Shah A.S.
        • Bressler S.L.
        • Knuth K.H.
        • Ding M.
        • Mehta A.D.
        • Ulbert I.
        • Schroeder C.E.
        Neural dynamics and the fundamental mechanisms of event-related brain potentials.
        Cereb Cortex. 2004; 14: 476-483
        • Skosnik P.D.
        • Krishnan G.P.
        • O'Donnell B.F.
        The effect of selective attention on the gamma-band auditory steady-state response.
        Neurosci Lett. 2007; 420: 223-228
        • Klausberger T.
        • Magill P.J.
        • Márton L.F.
        • Roberts J.D.
        • Cobden P.M.
        • Buzsáki G.
        • Somogyi P.
        Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.
        Nature. 2003; 421: 844-848
        • Tukker J.J.
        • Fuentealba P.
        • Hartwich K.
        • Somogyi P.
        • Klausberger T.
        Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.
        J Neurosci. 2007; 27: 8184-8189
        • Hashimoto T.
        • Volk D.W.
        • Eggan S.M.
        • Mirnics K.
        • Pierri J.N.
        • Sun Z.
        • et al.
        Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
        J Neurosci. 2003; 23: 6315-6326
        • Kinney J.W.
        • Davis C.N.
        • Tabarean I.
        • Conti B.
        • Bartfai T.
        • Behrens M.M.
        A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.
        J Neurosci. 2006; 26: 1604-1615
        • Javitt D.C.
        Glutamate and schizophrenia: Phencyclidine, N-methyl-d-aspartate receptors, and dopamine-glutamate interactions.
        Int Rev Neurobiol. 2007; 78: 69-108
        • Bullock W.M.
        • Bolognani F.
        • Botta P.
        • Valenzuela C.F.
        • Perrone-Bizzozero N.I.
        Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine.
        Neurochem Int. 2009; 55: 775-782
        • Braun I.
        • Genius J.
        • Grunze H.
        • Bender A.
        • Möller H.J.
        • Rujescu D.
        Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism.
        Schizophr Res. 2007; 97: 254-263
        • Pugh K.R.
        • Offywitz B.A.
        • Shaywitz S.E.
        • Fulbright R.K.
        • Byrd D.
        • Skudlarski P.
        • et al.
        Auditory selective attention: An fMRI investigation.
        Neuroimage. 1996; 4: 159-173
        • Scarr E.
        • Dean B.
        Muscarinic receptors: Do they have a role in the pathology and treatment of schizophrenia?.
        J Neurochem. 2008; 107: 1188-1195
        • Minzenberg M.J.
        • Firl A.J.
        • Yoon J.H.
        • Gomes G.C.
        • Reinking C.
        • Carter C.S.
        Gamma Oscillatory Power is Impaired during Cognitive control Independent of medication Status in First-Episode schizophrenia.
        Neuropsychopharmacology. 2010; 35: 2590-2599
        • Sweet R.A.
        • Bergen S.E.
        • Sun Z.
        • Marcsisin M.J.
        • Sampson A.R.
        • Lewis D.A.
        Anatomical evidence of impaired feedforward auditory processing in schizophrenia.
        Biol Psychiatry. 2007; 61: 854-864
        • Spencer K.M.
        The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: Insights from computational modeling.
        Front Hum Neurosci. 2009; 3: 33