Advertisement
Review| Volume 70, ISSUE 1, P28-34, July 01, 2011

A Roadmap for the Development and Validation of Event-Related Potential Biomarkers in Schizophrenia Research

Published:November 26, 2010DOI:https://doi.org/10.1016/j.biopsych.2010.09.021
      New efforts to develop treatments for cognitive dysfunction in mental illnesses would benefit enormously from biomarkers that provide sensitive and reliable measures of the neural events underlying cognition. Here, we evaluate the promise of event-related potentials (ERPs) as biomarkers of cognitive dysfunction in schizophrenia. We conclude that ERPs have several desirable properties: 1) they provide a direct measure of electrical activity during neurotransmission; 2) their high temporal resolutions make it possible to measure neural synchrony and oscillations; 3) they are relatively inexpensive and convenient to record; 4) animal models are readily available for several ERP components; 5) decades of research has established the sensitivity and reliability of ERP measures in psychiatric illnesses; and 6) feasibility of large N (>500) multisite studies has been demonstrated for key measures. Consequently, ERPs may be useful for identifying endophenotypes and defining treatment targets, for evaluating new compounds in animals and in humans, and for identifying individuals who are good candidates for early interventions or for specific treatments. However, several challenges must be overcome before ERPs gain widespread use as biomarkers in schizophrenia research, and we make several recommendations for the research that is necessary to develop and validate ERP-based biomarkers that can have a real impact on treatment development.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pascual-Marqui R.D.
        Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details.
        Methods Find Exp Clin Pharmacol. 2002; 24: 5-12
        • Hämäläinen M.S.
        • Ilmonieni R.J.
        Interpreting Measured Magnetic Fields of the Brain: Estimates of Current Distributions.
        Helsinki University of Technology, Esbo, Finland1984
        • Mosher J.C.
        • Baillet S.
        • Leahy R.M.
        EEG source localization and imaging using multiple signal classification approaches.
        J Clin Neurophysiol. 1999; 16: 225-238
        • Scherg M.
        • von Cramon D.
        Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model.
        Electroencephalogr Clin Neurophysiol. 1985; 62: 32-44
        • Nunez P.L.
        • Srinivasan R.
        Electric Fields of the Brain.
        2nd ed. Oxford University Press, New York2006
        • Hämäläinen M.S.
        • Hari R.
        • Ilmonieni R.J.
        • Knuutila J.
        • Lounasmaa O.V.
        Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain.
        Rev Mod Phys. 1993; 65: 413-497
        • Liu A.K.
        • Dale A.M.
        • Belliveau J.W.
        Monte Carlo simulation studies of EEG and MEG localization accuracy.
        Hum Brain Mapp. 2002; 16: 47-62
        • Dale A.M.
        • Sereno M.I.
        Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach.
        J Cogn Neurosci. 1993; 5: 162-176
        • Dale A.M.
        • Liu A.K.
        • Fischl B.R.
        • Buckner R.L.
        • Belliveau J.W.
        • Lewine J.D.
        • et al.
        Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity.
        Neuron. 2000; 26: 55-67
        • Luck S.J.
        Ten simple rules for designing ERP experiments.
        in: Handy T.C. Event-Related Potentials: A Methods Handbook. MIT Press, Cambridge, MA2005: 17-32
        • Spencer K.M.
        • Dien J.
        • Donchin E.
        Spatiotemporal analysis of the late ERP responses to deviant stimuli.
        Psychophysiology. 2001; 38: 343-358
        • Makeig S.
        • Debener S.
        • Onton J.
        • Delorme A.
        Mining event-related brain dynamics.
        Trends Cogn Sci. 2004; 8: 204-210
        • Rosburg T.
        • Trautner P.
        • Dietl T.
        • Korzyukov O.A.
        • Boutros N.N.
        • Schaller C.
        • et al.
        Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy.
        Brain. 2005; 128: 819-828
        • Rosburg T.
        Left hemispheric dipole locations of the neuromagnetic mismatch negativity to frequency, intensity and duration deviants.
        Brain Res Cogn Brain Res. 2003; 16: 83-90
        • Javitt D.C.
        • Steinschneider M.
        • Schroeder C.E.
        • Arezzo J.C.
        Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia.
        Proc Natl Acad Sci U S A. 1996; 93: 11962-11967
        • Kreitschmann-Andermahr I.
        • Rosburg T.
        • Demme U.
        • Gaser E.
        • Nowak H.
        • Sauer H.
        Effect of ketamine on the neuromagnetic mismatch field in healthy humans.
        Brain Res Cogn Brain Res. 2001; 12: 109-116
        • Heekeren K.
        • Daumann J.
        • Neukirch A.
        • Stock C.
        • Kawohl W.
        • Norra C.
        • et al.
        Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis.
        Psychopharmacology (Berl). 2008; 199: 77-88
        • Tikhonravov D.
        • Neuvonen T.
        • Pertovaara A.
        • Savioja K.
        • Ruusuvirta T.
        • Naatanen R.
        • Carlson S.
        Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats.
        Brain Res. 2008; 1203: 97-102
        • Umbricht D.
        • Schmid L.
        • Koller R.
        • Vollenweider F.X.
        • Hell D.
        • Javitt D.C.
        Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 1139-1147
        • Ehrlichman R.S.
        • Maxwell C.R.
        • Majumdar S.
        • Siegel S.J.
        Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice.
        J Cogn Neurosci. 2008; 20: 1403-1414
        • Oranje B.
        • van Berckel B.N.
        • Kemner C.
        • van Ree J.M.
        • Kahn R.S.
        • Verbaten M.N.
        The effects of a sub-anaesthetic dose of ketamine on human selective attention.
        Neuropsychopharmacology. 2000; 22: 293-302
        • Logothetis N.K.
        The underpinnings of the BOLD functional magnetic resonance imaging signal.
        J Neurosci. 2003; 23: 3963-3971
        • Logothetis N.K.
        • Pauls J.
        • Augath M.
        • Trinath T.
        • Oeltermann A.
        Neurophysiological investigation of the basis of the fMRI signal.
        Nature. 2001; 412: 150-157
        • Luck S.J.
        Direct and indirect integration of event-related potentials, functional magnetic resonance images, and single-unit recordings.
        Hum Brain Mapp. 1999; 8: 115-121
        • Javitt D.C.
        • Spencer K.M.
        • Thaker G.K.
        • Winterer G.
        • Hajos M.
        Neurophysiological biomarkers for drug development in schizophrenia.
        Nat Rev Drug Discov. 2008; 7: 68-83
        • Metzger K.L.
        • Maxwell C.R.
        • Liang Y.
        • Siegel S.J.
        Effects of nicotine vary across two auditory evoked potentials in the mouse.
        Biol Psychiatry. 2007; 61: 23-30
        • Ford J.M.
        • Krystal J.H.
        • Mathalon D.H.
        Neural synchrony in schizophrenia: From networks to new treatments.
        Schizophr Bull. 2007; 33: 848-852
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Woo T.U.W.
        • Spencer K.
        • McCarley R.W.
        Gamma oscillation deficits and the onset and early progression of schizophrenia.
        Harv Rev Psychiatry. 2010; 18: 173-189
        • Singer W.
        Neural synchronization: A solution to the binding problem?.
        in: Llinas R. Churchland P.S. The Mind-Brain Continuum. MIT Press, Cambridge, MA1996: 101-130
        • Whittington M.A.
        • Faulkner H.J.
        • Doheny H.C.
        • Traub R.D.
        Neuronal fast oscillations as a target site for psychoactive drugs.
        Pharmacol Ther. 2000; 86: 171-190
        • Brenner C.A.
        • Krishnan G.P.
        • Vohs J.L.
        • Ahn W.Y.
        • Hetrick W.P.
        • Morzorati S.L.
        • O'Donnell B.F.
        Steady state responses: Electrophysiological assessment of sensory function in schizophrenia.
        Schizophr Bull. 2009; 35: 1065-1077
        • Hesselbrock V.
        • Begleiter H.
        • Porjesz B.
        • O'Connor S.
        • Bauer L.
        P300 event-related potential amplitude as an endophenotype of alcoholism--evidence from the collaborative study on the genetics of alcoholism.
        J Biomed Sci. 2001; 8: 77-82
        • Calkins M.E.
        • Dobie D.J.
        • Cadenhead K.S.
        • Olincy A.
        • Freedman R.
        • Green M.F.
        • et al.
        The Consortium on the Genetics of Endophenotypes in Schizophrenia: Model recruitment, assessment, and endophenotyping methods for a multisite collaboration.
        Schizophr Bull. 2007; 33: 33-48
      1. Woodman GF (in press): Homologues of human ERP components in nonhuman primates. In: Luck SJ, Kappenman ES, editors. The Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.

        • Watson T.D.
        • Petrakis I.L.
        • Edgecombe J.
        • Perrino A.
        • Krystal J.H.
        • Mathalon D.H.
        Modulation of the cortical processing of novel and target stimuli by drugs affecting glutamate and GABA neurotransmission.
        Int J Neuropsychopharmacol. 2009; 12: 357-370
        • Bramon E.
        • Shaikh M.
        • Broome M.
        • Lappin J.
        • Berge D.
        • Day F.
        • et al.
        Abnormal P300 in people with high risk of developing psychosis.
        Neuroimage. 2008; 41: 553-560
        • Bramon E.
        • Rabe-Hesketh S.
        • Sham P.
        • Murray R.M.
        • Frangou S.
        Meta-analysis of the P300 and P50 waveforms in schizophrenia.
        Schizophr Res. 2004; 70: 315-329
        • Potter D.
        • Summerfelt A.
        • Gold J.
        • Buchanan R.W.
        Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia.
        Schizophr Bull. 2006; 32: 692-700
        • Jeon Y.W.
        • Polich J.
        Meta-analysis of P300 and schizophrenia: Patients, paradigms, and practical implications.
        Psychophysiology. 2003; 40: 684-701
        • Schall U.
        • Catts S.V.
        • Karayanidis F.
        • Ward P.B.
        Auditory event-related potential indices of fronto-temporal information processing in schizophrenia syndromes: Valid outcome prediction of clozapine therapy in a three-year follow-up.
        Int J Neuropsychopharmacol. 1999; 2: 83-93
      2. Bruder GE, Kayser J, Tenke CE (in press): Event-related brain potentials in depression: Clinical, cognitive and neurophysiologic implications. In: Luck SJ, Kappenman ES, editors. Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.

        • Fischer C.
        • Luaute J.
        • Adeleine P.
        • Morlet D.
        Predictive value of sensory and cognitive evoked potentials for awakening from coma.
        Neurology. 2004; 63: 669-673
        • Glenn S.W.
        • Sinha R.
        • Parsons O.A.
        Electrophysiological indices predict resumption of drinking in sober alcoholics.
        Alcohol. 1993; 10: 89-95
        • Sangal R.B.
        • Sangal J.M.
        Attention-deficit/hyperactivity disorder: Cognitive evoked potential (P300) amplitude predicts treatment response to atomoxetine.
        Clin Neurophysiol. 2005; 116: 640-647
        • Sangal R.B.
        • Sangal J.M.
        • Belisle C.
        Visual P300 latency predicts treatment response to modafinil in patients with narcolepsy.
        Clin Neurophysiol. 1999; 110: 1041-1047
        • Frommann I.
        • Brinkmeyer J.
        • Ruhrmann S.
        • Hack E.
        • Brockhaus-Dumke A.
        • Bechdolf A.
        • et al.
        Auditory P300 in individuals clinically at risk for psychosis.
        Int J Psychophysiol. 2008; 70: 192-205
        • Ozgurdal S.
        • Gudlowski Y.
        • Witthaus H.
        • Kawohl W.
        • Uhl I.
        • Hauser M.
        • et al.
        Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia.
        Schizophr Res. 2008; 105: 272-278
        • van der Stelt O.
        • Lieberman J.A.
        • Belger A.
        Auditory P300 in high-risk, recent-onset and chronic schizophrenia.
        Schizophr Res. 2005; 77: 309-320
        • Brockhaus-Dumke A.
        • Tendolkar I.
        • Pukrop R.
        • Schultze-Lutter F.
        • Klosterkotter J.
        • Ruhrmann S.
        Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia.
        Schizophr Res. 2005; 73: 297-310
        • Shin K.S.
        • Kim J.S.
        • Kang D.H.
        • Koh Y.
        • Choi J.S.
        • O'Donnell B.F.
        • et al.
        Pre-attentive auditory processing in ultra-high-risk for schizophrenia with magnetoencephalography.
        Biol Psychiatry. 2009; 65: 1071-1078
        • Addington J.
        • Cadenhead K.S.
        • Cannon T.D.
        • Cornblatt B.
        • McGlashan T.H.
        • Perkins D.O.
        • et al.
        North American Prodrome Longitudinal Study: A collaborative multisite approach to prodromal schizophrenia research.
        Schizophr Bull. 2007; 33: 665-672
        • Kappenman E.S.
        • Luck S.J.
        The effects of electrode impedance on data quality and statistical significance in ERP recordings.
        Psychophysiology. 2010; 47: 888-904
      3. Polich J (in press): Neuropsychology of P300. In: Luck SJ, Kappenman ES, editors. Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.

        • Mathalon D.H.
        • Ford J.M.
        • Pfefferbaum A.
        Trait and state aspects of P300 amplitude reduction in schizophrenia: A retrospective longitudinal study.
        Biol Psychiatry. 2000; 47: 434-449
        • Olvet D.M.
        • Hajcak G.
        Reliability of error-related brain activity.
        Brain Res. 2009; 1284: 89-99
        • Sinha R.
        • Bernardy N.
        • Parsons O.A.
        Long-term test-retest reliability of event-related potentials in normals and alcoholics.
        Biol Psychiatry. 1992; 32: 992-1003
        • Fuerst D.R.
        • Gallinat J.
        • Boutros N.N.
        Range of sensory gating values and test-retest reliability in normal subjects.
        Psychophysiology. 2007; 44: 620-626
        • Olvet D.M.
        • Hajcak G.
        The stability of error-related brain activity with increasing trials.
        Psychophysiology. 2009; 46: 957-961
        • Bennett C.M.
        • Miller M.B.
        How reliable are the results from functional magnetic resonance imaging?.
        Ann N Y Acad Sci. 2010; 1191: 133-155
        • Ahlfors S.P.
        • Han J.
        • Lin F.H.
        • Witzel T.
        • Belliveau J.W.
        • Hamalainen M.S.
        • Halgren E.
        Cancellation of EEG and MEG signals generated by extended and distributed sources.
        Hum Brain Mapp. 2010; 31: 140-149
        • Law S.K.
        Thickness and resistivity variations over the upper surface of the human skull.
        Brain Topogr. 1993; 6: 99-109
        • Frodl T.
        • Meisenzahl E.M.
        • Muller D.
        • Leinsinger G.
        • Juckel G.
        • Hahn K.
        • et al.
        The effect of the skull on event-related P300.
        Clin Neurophysiol. 2001; 112: 1773-1776
        • Squires N.K.
        • Squires K.C.
        • Hillyard S.A.
        Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli.
        Electroencephalogr Clin Neurophysiol. 1975; 38: 387-401
        • Arthur D.L.
        • Starr A.
        Task-relevant late positive component of the auditory event-related potential in monkeys resembles P300 in humans.
        Science. 1984; 223: 186-188
        • Pineda J.A.
        • Foote S.L.
        • Neville H.J.
        Effects of locus coeruleus lesions on auditory, long-latency, event-related potentials in monkey.
        J Neurosci. 1989; 9: 81-93
        • Picton T.W.
        • Bentin S.
        • Berg P.
        • Donchin E.
        • Hillyard S.A.
        • Johnson Jr., R.
        • et al.
        Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria.
        Psychophysiology. 2000; 37: 127-152
        • American_Electroencephalographic_Society
        Guidelines for clinical evoked potential studies.
        J Clin Neurophysiol. 1984; 1: 3-53
      4. Näätänen R, Kreegipuu K (in press): The mismatch negativity (MMN). In: Luck SJ, Kappenman ES, editors. Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.

        • Luck S.J.
        • Kappenman E.S.
        • Fuller R.L.
        • Robinson B.
        • Summerfelt A.
        • Gold J.M.
        Impaired response selection in schizophrenia: Evidence from the P3 wave and the lateralized readiness potential.
        Psychophysiology. 2009; 46: 776-786