Advertisement

Immediate and Sustained Improvements in Working Memory After Selective Stimulation of α7 Nicotinic Acetylcholine Receptors

      Background

      Nicotine improves cognition in humans and animal models of neuropsychiatric disorders. Here, we sought to establish whether selective stimulation of the neuronal nicotinic α7 receptor could improve spatial working memory in nonhuman primates.

      Methods

      Beginning with an estimated dose range from rodent studies, the dose of the α7 agonist AZD0328 was titrated for a significant impact on working memory in rhesus macaques after acute administration. After training to stability on the spatial delayed response task, subjects were administered AZD0328 (1.6 ng/kg–.48 mg/kg; intramuscular) or vehicle 30 min before cognitive testing. AZD0328 (1 ng/kg–1.0 μg/kg; intramuscular) was then administered in a repeated, intermittent ascending dose regimen where each dose was given in two bouts for 4 days with a 1-week washout in between bouts, followed by 2-week washout.

      Results

      Acute AZD0328 improved cognitive performance when the dose was titrated down to .0016 and .00048 mg/kg from a cognitively impairing dose of .48 mg/kg. In a subgroup, sustained enhancement of working memory was evident for 1 month or more after acute treatment. Immediate and sustained cognitive enhancement was also found during and after repeated administration of AZD0328 at .001 mg/kg.

      Conclusions

      These findings demonstrate that extremely low doses of a nicotinic α7 agonist can have profound acute and long-lasting beneficial consequences for cognition, dependent upon the integrity of dorsolateral prefrontal cortex. Thus, the α7 receptor might have a fundamental role in the neural circuitry of working memory and in the synaptic plasticity upon which it might depend.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gopalaswamy A.K.
        • Morgan R.
        Smoking in chronic schizophrenia.
        Br J Psychiatry. 1986; 149: 523
        • Cullum C.M.
        • Harris J.G.
        • Waldo M.C.
        • Smernoff E.
        • Madison A.
        • Nagamoto H.T.
        • et al.
        Neurophysiological and neuropsychological evidence for attentional dysfunction in schizophrenia.
        Schizophr Res. 1993; 10: 131-141
        • Adler L.E.
        • Hoffer L.D.
        • Wiser A.
        • Freedman R.
        Normalization of auditory physiology by cigarette smoking in schizophrenic patients.
        Am J Psychiatry. 1993; 150: 1856-1861
        • Adler L.E.
        • Olincy A.
        • Waldo M.
        • Harris J.G.
        • Griffith J.
        • Stevens K.
        • et al.
        Schizophrenia, sensory gating, and nicotinic receptors.
        Schizophr Bull. 1998; 24: 189-202
        • Freedman R.
        • Coon H.
        • Myles-Worsley M.
        • Orr-Urtreger A.
        • Olincy A.
        • Davis A.
        • et al.
        Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus.
        Proc Natl Acad Sci U S A. 1997; 94: 587-592
        • Leonard S.
        • Breese C.
        • Adams C.
        • Benhammou K.
        • Gault J.
        • Stevens K.
        • et al.
        Smoking and schizophrenia: Abnormal nicotinic receptor expression.
        Eur J Pharmacol. 2000; 393: 237-242
        • De Luca V.
        • Wong A.H.
        • Muller D.J.
        • Wong G.W.
        • Tyndale R.F.
        • Kennedy J.L.
        Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients.
        Neuropsychopharmacology. 2004; 29: 1522-1526
        • Fenster C.P.
        • Rains M.F.
        • Noerager B.
        • Quick M.W.
        • Lester R.A.
        Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine.
        J Neurosci. 1997; 17: 5747-5759
        • Vijayaraghavan S.
        • Pugh P.C.
        • Zhang Z.W.
        • Rathouz M.M.
        • Berg D.K.
        Nicotinic receptors that bind alphabungarotoxin on neurons raise intracellular free Ca2+.
        Neuron. 1992; 8: 353-362
        • Sharma G.
        • Vijayaraghavan S.
        Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores.
        Proc Natl Acad Sci U S A. 2001; 98: 4148-4153
        • Sharma G.
        • Grybko M.
        • Vijayaraghavan S.
        Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses.
        J Neurosci. 1998; 28: 2563-2575
        • Benfenati F.
        Synaptic plasticity and the neurobiology of learning and memory.
        Acta Biol Med. 2007; 78: 58-66
        • Hellström-Lindahl E.
        • Mousavi M.
        • Zhang X.
        • Ravid R.
        • Nordberg A.
        Regional distribution of nicotinic receptor subunit mRNAs in human brain: Comparison between Alzheimer and normal brain.
        Brain Res Mol Brain Res. 1999; 66: 94-103
        • Quik M.
        • Polonskaya Y.
        • Gillespie A.
        • Jakowec M.
        • Lloyd G.K.
        • Langston J.W.
        Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization.
        J Comp Neurol. 2000; 425: 58-69
        • Chen D.
        • Patrick J.W.
        The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit.
        J Biol Chem. 1997; 272: 24024-24029
        • Marutle A.
        • Zhang X.
        • Court J.
        • Piggott M.
        • Johnson M.
        • Perry R.
        • et al.
        Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia.
        J Chem Neuroanat. 2001; 22: 115-126
        • Fabian-Fine R.
        • Skehel P.
        • Errington M.L.
        • Davies H.A.
        • Sher E.
        • Stewart M.G.
        • Fine A.
        Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus.
        J Neurosci. 2001; 21: 7993-8003
        • Schilström B.
        • Fagerquist M.V.
        • Zhang X.
        • Hertel P.
        • Panagis G.
        • Nomikos G.G.
        • Svensson T.H.
        Putative role of presynaptic alpha7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area.
        Synapse. 2000; 38: 375-383
        • Wu J.
        • Khan G.M.
        • Nichols R.A.
        Dopamine release in prefrontal cortex in response to beta-amyloid activation of alpha7 * nicotinic receptors.
        Brain Res. 2007; 1182: 82-89
        • Dickinson J.A.
        • Kew J.N.
        • Wonnacott S.
        Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms.
        Mol Pharmacol. 2008; 74: 348-359
        • Sydserff S.
        • Sutton E.J.
        • Song D.
        • Quirk M.C.
        • Maciag C.
        • Li C.
        • et al.
        Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes.
        Biochem Pharmacol. 2009; 78: 880-888
        • Widzowski D.V.
        • Maier D.
        • McLaughlin J.
        • Neilson K.
        • Bock M.J.
        • Wang Y.
        • et al.
        AZD0328 and AZ11943872: α7 nicotinic agonists that reverse fimbria-fornix-transection-induced working memory deficits following acute or chronic administration.
        Soc Neurosci Abstr. 2007; 906: 21
        • Christian E.P.
        • Smith J.S.
        • Doherty J.J.
        • Li C.
        AZD0328: Dose-dependent normalization of hippocampal long term potentiation induction deficit in the fimbria/fornix lesioned rat in vivo.
        Soc Neurosci Abstr. 2007; 906: 9
        • Castner S.A.
        • Goldman-Rakic P.S.
        Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation.
        J Neurosci. 2004; 24: 1446-1450
        • Cai J.X.
        • Arnsten A.F.
        Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys.
        J Pharmacol Exp Ther. 1997; 283: 183-189
        • Castner S.A.
        • Williams G.V.
        • Goldman-Rakic P.S.
        Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation.
        Science. 2000; 287: 2020-2022
      1. Preskorn S, D'Empare I, Baker B, Palfreyman M, Gawry M, Hilt D (2009): EVP-6124, an Alpha-7 Nicotinic Agonist Produces Normalizing Effects on Evoked Response Biomarkers and Cognition in Patients with Chronic Schizophrenia on Stable Antipsychotic Therapy. Miami Beach, FL: ACNP 48th Annual Meeting, 77.

        • Picciotto M.R.
        Nicotine as a modulator of behavior: beyond the inverted U.
        Trends Pharmacol Sci. 2003; 24: 493-499
        • Callahan P.M.
        • Wang S.
        • Xie W.
        • Dragan S.
        • Sun S.
        • Michael T.
        • et al.
        Pharmacological characterization of MEM, 3454, A novel nicotinic alpha7 receptor partial agonist: therapeutic potential for the cognitive deficits associated with Alzheimer's disease and schizophrenia.
        Neuropsychopharmacol. 2006; 31: S198
        • Koliatsos V.E.
        • Martin L.J.
        • Walker L.C.
        • Richardson R.T.
        • DeLong M.R.
        • Price D.L.
        Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey.
        Brain Res. 1988; 463: 133-139
        • Everitt B.J.
        • Robbins T.W.
        Central cholinergic systems and cognition.
        Annu Rev Psychol. 1997; 48: 649-684
        • Ghashghaei H.T.
        • Barbas H.
        Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey.
        Neuroscience. 2001; 103: 593-614
        • Pauli W.M.
        • O'Reilly R.C.
        Attentional control of associative learning—a possible role of the central cholinergic system.
        Brain Res. 2008; 1202: 43-53
        • Levin E.D.
        • McClernon F.J.
        • Rezvani A.H.
        Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization.
        Psychopharmacology. 2006; 184: 523-539
        • Mansvelder H.D.
        • van Aerde K.I.
        • Couey J.J.
        • Brussaard A.B.
        Nicotinic modulation of neuronal networks: From receptors to cognition.
        Psychopharmacology. 2006; 184: 292-305
        • Wang X.J.
        Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory.
        J Neurosci. 1999; 19: 9587-9603
        • Seamans J.K.
        • Nogueira L.
        • Lavin A.
        Synaptic basis of persistent activity in prefrontal cortex in vivo and in organotypic cultures.
        Cereb Cortex. 2003; 13: 1242-1250
        • Tseng K.Y.
        • O'Donnell P.
        Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation.
        Cereb Cortex. 2005; 15: 49-57
        • Buccafusco J.J.
        • Terry Jr, A.V.
        A reversible model of the cognitive impairment associated with schizophrenia in monkeys: Potential therapeutic effects of two nicotinic acetylcholine receptor agonists.
        Biochem Pharmacol. 2009; 78: 852-862
        • Rao S.G.
        • Williams G.V.
        • Goldman-Rakic P.S.
        Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: Evidence for microcolumnar organization in PFC.
        J Neurophysiol. 1999; 81: 1903-1916
        • Rao S.G.
        • Williams G.V.
        • Goldman-Rakic P.S.
        Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory.
        J Neurosci. 2000; 20: 485-494
        • Constantinidis C.
        • Williams G.V.
        • Goldman-Rakic P.S.
        A role for inhibition in shaping the temporal flow of information in prefrontal cortex.
        Nat Neurosci. 2002; 5: 175-180
        • Gonzalez-Burgos G.
        • Lewis D.A.
        GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia.
        Schizophr Bull. 2008; 34: 944-961
        • Arnaiz-Cot J.J.
        • González J.C.
        • Sobrado M.
        • Baldelli P.
        • Carbone E.
        • Gandía L.
        • et al.
        Allosteric modulation of alpha 7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission.
        Eur J Neurosci. 2008; 27: 1097-1110
        • Biton B.
        • Bergis O.E.
        • Galli F.
        • Nedelec A.
        • Lochead A.W.
        • Jegham S.
        • et al.
        SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile.
        Neuropsychopharmacology. 2007; 32: 1-16
        • Lewis D.A.
        • Cho R.Y.
        • Carter C.S.
        • Eklund K.
        • Forster S.
        • Kelly M.A.
        • Montrose D.
        Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia.
        Am J Psychiatry. 2008; 165: 1585-1593
        • Meberg P.J.
        • Kossel A.H.
        • Williams C.V.
        • Kater S.B.
        Calcium-dependent alterations in dendritic architecture of hippocampal pyramidal neurons.
        Neuroreport. 1999; 10: 639-644
        • Konur S.
        • Ghosh A.
        Calcium signaling and the control of dendritic development.
        Neuron. 2005; 46: 401-405
        • Lohmann C.
        • Wong R.O.
        Regulation of dendritic growth and plasticity by local and global calcium dynamics.
        Cell Calcium. 2005; 37: 403-409
        • Wayman G.A.
        • Impey S.
        • Marks D.
        • Saneyoshi T.
        • Grant W.F.
        • Derkach V.
        • Soderling T.R.
        Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2.
        Neuron. 2006; 50: 897-909
        • Lohmann C.
        Calcium signaling and the development of specific neuronal connections.
        Prog Brain Res. 2009; 175: 443-452
        • Bitner R.S.
        • Bunnelle W.H.
        • Anderson D.J.
        • Briggs C.A.
        • Buccafusco J.
        • Curzon P.
        • et al.
        Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways.
        J Neurosci. 2007; 27: 10578-10587
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Dajas-Bailador F.A.
        • Mogg A.J.
        • Wonnacott S.
        Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores.
        J Neurochem. 2002; 81: 606-614
        • Selemon L.D.
        • Mrzljak L.
        • Kleinman J.E.
        • Herman M.M.
        • Goldman-Rakic P.S.
        Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca's area 44 and area 9.
        Arch Gen Psychiatry. 2003; 60: 69-77
        • Kozlovsky N.
        • Belmaker R.H.
        • Agam G.
        Low GSK-3 activity in frontal cortex of schizophrenic patients.
        Schizophr Res. 2001; 52: 101-105