Advertisement

Cross-Sectional and Longitudinal Assessment of Structural Brain Alterations in Melancholic Depression

  • Carles Soriano-Mas
    Correspondence
    Address correspondence to Carles Soriano-Mas, Ph.D., Institut d'Alta Tecnologia—PRBB, CRC Hospital del Mar, Passeig Marítim 25-29, Barcelona 08003, Spain
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain

    Human Pharmacology and Neurosciences, Fundació Institut Municipal d'Investigació Mèdica, Barcelona, Spain
    Search for articles by this author
  • Rosa Hernández-Ribas
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain

    Department of Psychiatry, Hospital Universitari Bellvitge, Barcelona, Spain
    Search for articles by this author
  • Jesús Pujol
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain

    Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
    Search for articles by this author
  • Mikel Urretavizcaya
    Affiliations
    Department of Psychiatry, Hospital Universitari Bellvitge, Barcelona, Spain

    Networking Research Center on Mental Health, Barcelona, Spain
    Search for articles by this author
  • Joan Deus
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain

    Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
    Search for articles by this author
  • Ben J. Harrison
    Affiliations
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, the University of Melbourne, Australia
    Search for articles by this author
  • Hector Ortiz
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain
    Search for articles by this author
  • Marina López-Solà
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain

    Clinical Sciences Department, University of Barcelona, Barcelona, Spain
    Search for articles by this author
  • Josep M. Menchón
    Affiliations
    Department of Psychiatry, Hospital Universitari Bellvitge, Barcelona, Spain

    Networking Research Center on Mental Health, Barcelona, Spain
    Search for articles by this author
  • Narcís Cardoner
    Affiliations
    Institut d'Alta Tecnologia— Parc de Recerca Biomèdica de Barcelona, Centre Radiològic Computeritzat Hospital del Mar, Barcelona, Spain

    Department of Psychiatry, Hospital Universitari Bellvitge, Barcelona, Spain

    Melbourne Neuropsychiatry Centre, Department of Psychiatry, the University of Melbourne, Australia
    Search for articles by this author
Published:September 28, 2010DOI:https://doi.org/10.1016/j.biopsych.2010.07.029

      Background

      Whole-brain imaging approaches may contribute to the characterization of neuroanatomic alterations in major depression, especially in clinically homogenous patient groups such as those with melancholic features. We assessed brain anatomic alterations, both cross-sectionally and longitudinally, in patients with melancholic depression using a whole-brain voxel-wise approach.

      Methods

      Whole-brain magnetic resonance images were collected from a relatively aged sample of 70 consecutively recruited major depressive disorder inpatients with melancholic features and from a group of 40 healthy control subjects. All patients were clinically followed for at least 2 years, and a subset of 30 depressive patients and 20 control subjects were rescanned after a 7-year period. Imaging data were analyzed with voxel- and tensor-based morphometry techniques.

      Results

      Melancholic patients showed gray matter reductions in the left insula and white matter increases in the upper brainstem tegmentum. Male patients showed gray matter decreases in the right thalamus, and periventricular white matter reductions were specifically observed in older patients. Volume decreases in the left insula, hippocampus, and lateral parietal cortex predicted a slower recovery after treatment initiation. In longitudinal assessment, white matter of the upper brainstem tegmentum showed a different temporal evolution between groups. Additionally, bilateral gray matter reductions in the insulae were associated with the number of relapses during follow-up.

      Conclusions

      Structural alterations were identified in regions potentially related to relevant aspects of melancholia pathophysiology. Longitudinal analyses indicated region-specific interactions of baseline alterations with age as well as a significant association of clinical severity with focal changes occurring over time.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Konarski J.Z.
        • McIntyre R.S.
        • Kennedy S.H.
        • Rafi-Tari S.
        • Soczynska J.K.
        • Ketter T.A.
        Volumetric neuroimaging investigations in mood disorders: Bipolar disorder versus major depressive disorder.
        Bipolar Disord. 2008; 10: 1-37
        • Koolschijn P.C.
        • van Haren N.E.
        • Lensvelt-Mulders G.J.
        • Hulshoff Pol H.E.
        • Kahn R.S.
        Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies.
        Hum Brain Mapp. 2009; 30: 3719-3735
        • Lorenzetti V.
        • Allen N.B.
        • Fornito A.
        • Yücel M.
        Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies.
        J Affect Disord. 2009; 117: 1-17
        • Hastings R.S.
        • Parsey R.V.
        • Oquendo M.A.
        • Arango V.
        • Mann J.J.
        Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression.
        Neuropsychopharmacology. 2004; 29: 952-959
        • Dupont R.M.
        • Jernigan T.L.
        • Heindel W.
        • Butters N.
        • Shafer K.
        • Wilson T.
        • et al.
        Magnetic resonance imaging and mood disorders.
        Arch Gen Psychiatry. 1995; 52: 747-755
        • Pizzagalli D.A.
        • Oakes T.R.
        • Fox A.S.
        • Chung M.K.
        • Larson C.L.
        • Abercrombie H.C.
        • et al.
        Functional but not structural subgenual prefrontal cortex abnormalities in melancholia.
        Mol Psychiatry. 2004; 9: 393-405
        • Sheline Y.I.
        • Gado M.H.
        • Price J.L.
        Amygdala core nuclei volumes are decreased in recurrent major depression.
        Neuroreport. 1998; 9: 2023-2028
        • Takahashi T.
        • Yücel M.
        • Lorenzetti V.
        • Tanino R.
        • Whittle S.
        • Suzuki M.
        • et al.
        Volumetric MRI study of the insular cortex in individuals with current and past major depression.
        J Affect Disord. 2010; 121: 231-238
        • Vasic N.
        • Walter H.
        • Höse A.
        • Wolf R.C.
        Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: A voxel-based morphometry study.
        J Affect Disord. 2008; 109: 107-116
        • Savitz J.B.
        • Drevets W.C.
        Imaging phenotypes of major depressive disorder: Genetic correlates.
        Neuroscience. 2009; 164: 300-330
        • Leventhal A.M.
        • Rehm L.P.
        The empirical status of melancholia: Implications for psychology.
        Clin Psychol Rev. 2005; 25: 25-44
        • Antonijevic I.A.
        Depressive disorders—is it time to endorse different pathophysiologies?.
        Psychoneuroendocrinology. 2006; 31: 1-15
        • Hickie I.
        • Naismith S.
        • Ward P.B.
        • Turner K.
        • Scott E.
        • Mitchell P.
        • et al.
        Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression.
        Br J Psychiatry. 2005; 186: 197-202
        • Pujol J.
        • Cardoner N.
        • Benlloch L.
        • Urretavizcaya M.
        • Deus J.
        • Losilla J.M.
        • et al.
        CSF spaces of the sylvian fissure region in severe melancholic depression.
        Neuroimage. 2002; 15: 103-106
        • Austin M.P.
        • Mitchell P.
        The anatomy of melancholia: Does frontal-subcortical pathophysiology underpin its psychomotor and cognitive manifestations?.
        Psychol Med. 1995; 25: 665-672
        • Rogers M.A.
        • Bradshaw J.L.
        • Pantelis C.
        • Phillips J.G.
        Frontostriatal deficits in unipolar major depression.
        Brain Res Bull. 1998; 47: 297-310
        • Gold P.W.
        • Chrousos G.P.
        Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states.
        Mol Psychiatry. 2002; 7: 254-275
        • Zimmerman M.
        • Coryell W.
        • Pfohl B.
        Validity of familial subtypes of primary unipolar depression.
        Arch Gen Psychiatry. 1986; 43: 1090-1096
        • Parker G.
        • Roy K.
        • Hadzi-Pavlovic D.
        • Wilhelm K.
        • Mitchell P.
        The differential impact of age on the phenomenology of melancholia.
        Psychol Med. 2001; 31: 1231-1236
        • Savitz J.
        • Drevets W.C.
        Bipolar and major depressive disorder: Neuroimaging the developmental-degenerative divide.
        Neurosci Biobehav Rev. 2009; 33: 699-771
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders—Clinician Version (SCID-CV).
        American Psychiatric Publishing, Washington, DC1997
        • Hamilton M.
        A rating scale for depression.
        J Neurol Neurosurg Psychiatry. 1960; 23: 56-62
        • Shtasel D.L.
        • Gur R.E.
        • Mozley P.D.
        • Richards J.
        • Taleff M.M.
        • Heimberg C.
        • et al.
        Volunteers for biomedical research.
        Arch Gen Psychiatry. 1991; 48: 1022-1025
        • Structural Brain Mapping Group, Department of Psychiatry, University of Jena (Germany)
        (Accessed June 14, 2010)
        • Pujol J.
        • Soriano-Mas C.
        • Alonso P.
        • Cardoner N.
        • Menchon J.M.
        • Deus J.
        • Vallejo J.
        Mapping structural brain alterations in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2004; 61: 720-730
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.
        • Friston K.J.
        • Frackowiak R.S.
        A voxel-based morphometric study of ageing in 465 normal adult human brains.
        Neuroimage. 2001; 14: 21-36
        • Salmond C.H.
        • Ashburner J.
        • Vargha-Khadem F.
        • Connelly A.
        • Gadian D.G.
        • Friston K.J.
        Distributional assumptions in voxel-based morphometry.
        Neuroimage. 2002; 17: 1027-1030
        • Chételat G.
        • Landeau B.
        • Eustache F.
        • Mézenge F.
        • Viader F.
        • de la Sayette V.
        • et al.
        Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study.
        Neuroimage. 2005; 27: 934-946
        • Kipps C.M.
        • Duggins A.J.
        • Mahant N.
        • Gomes L.
        • Ashburner J.
        • McCusker E.A.
        Progression of structural neuropathology in preclinical Huntington disease: A tensor based morphometry study.
        J Neurol Neurosurg Psychiatry. 2005; 76: 650-655
        • Moorhead T.W.
        • McKirdy J.
        • Sussmann J.E.
        • Hall J.
        • Lawrie S.M.
        • Johnstone E.C.
        • McIntosh A.M.
        Progressive gray matter loss in patients with bipolar disorder.
        Biol Psychiatry. 2007; 62: 894-900
        • Draganski B.
        • Gaser C.
        • Busch V.
        • Schuierer G.
        • Bogdahn U.
        • May A.
        Neuroplasticity: Changes in grey matter induced by training.
        Nature. 2004; 427: 311-312
        • Frodl T.S.
        • Koutsouleris N.
        • Bottlender R.
        • Born C.
        • Jäger M.
        • Scupin I.
        • et al.
        Depression-related variation in brain morphology over 3 years: Effects of stress?.
        Arch Gen Psychiatry. 2008; 65: 1156-1165
        • Tzourio-Mazoyer N.
        • Landeau B.
        • Papathanassiou D.
        • Crivello F.
        • Etard O.
        • Delcroix N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        Neuroimage. 2002; 15: 273-289
        • Mayberg H.S.
        • Liotti M.
        • Brannan S.K.
        • McGinnis S.
        • Mahurin R.K.
        • Jerabek P.A.
        • et al.
        Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness.
        Am J Psychiatry. 1999; 156: 675-682
        • Phillips M.L.
        • Drevets W.C.
        • Rauch S.L.
        • Lane R.
        Neurobiology of emotion perception.
        Biol Psychiatry. 2003; 54: 504-514
        • Augustine J.R.
        Circuitry and functional aspects of the insular lobe in primates including humans.
        Brain Res Brain Res Rev. 1996; 22: 229-244
        • Craig A.D.
        Interoception: The sense of the physiological condition of the body.
        Curr Opin Neurobiol. 2003; 13: 500-505
        • Strigo I.A.
        • Simmons A.N.
        • Matthews S.C.
        • Craig A.D.
        • Paulus M.P.
        Association of major depressive disorder with altered functional brain response during anticipation and processing of heat pain.
        Arch Gen Psychiatry. 2008; 65: 1275-1284
        • Dunn B.D.
        • Dalgleish T.
        • Ogilvie A.D.
        • Lawrence A.D.
        Heartbeat perception in depression.
        Behav Res Ther. 2007; 45: 1921-1930
        • Wiebking C.
        • Bauer A.
        • de Greck M.
        • Duncan N.W.
        • Tempelmann C.
        • Northoff G.
        Abnormal body perception and neural activity in the insula in depression: An fMRI study of the depressed “material me.”.
        World J Biol Psychiatry. 2010; 11: 538-549
        • Nyboe Jacobsen L.
        • Smith Lassen I.
        • Friis P.
        • Videbech P.
        • Wentzer Licht R.
        Bodily symptoms in moderate and severe depression.
        Nord J Psychiatry. 2006; 60: 294-298
        • Maes M.
        “Functional” or “psychosomatic” symptoms, e.g., a flu-like malaise, aches and pain and fatigue, are major features of major and in particular of melancholic depression.
        Neuro Endocrinol Lett. 2009; 30: 564-573
        • Craig A.D.
        How do you feel?.
        Nat Rev Neurosci. 2002; 3: 655-666
        • Drevets W.C.
        Neuroimaging studies of mood disorders.
        Biol Psychiatry. 2000; 48: 813-829
        • O'Keane V.
        • Dinan T.G.
        • Scott L.
        • Corcoran C.
        Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression.
        Biol Psychiatry. 2005; 58: 963-968
        • Drevets W.C.
        • Thase M.E.
        • Moses-Kolko E.L.
        • Price J.
        • Frank E.
        • Kupfer D.J.
        • Mathis C.
        Serotonin-1A receptor imaging in recurrent depression: Replication and literature review.
        Nucl Med Biol. 2007; 34: 865-877
        • Vertes R.P.
        A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat.
        J Comp Neurol. 1991; 313: 643-668
        • Supprian T.
        • Reiche W.
        • Schmitz B.
        • Grunwald I.
        • Backens M.
        • Hofmann E.
        • et al.
        MRI of the brainstem in patients with major depression, bipolar affective disorder and normal controls.
        Psychiatry Res. 2004; 131: 269-276
        • Becker G.
        • Becker T.
        • Struck M.
        • Lindner A.
        • Burzer K.
        • Retz W.
        • et al.
        Reduced echogenicity of brainstem raphe specific to unipolar depression: A transcranial color-coded real-time sonography study.
        Biol Psychiatry. 1995; 38: 180-184
        • Abe O.
        • Yamasue H.
        • Kasai K.
        • Yamada H.
        • Aoki S.
        • Inoue H.
        • et al.
        Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression.
        Psychiatry Res. 2010; 181: 64-70
        • Yakovlev P.I.
        • Lecours A.R.
        The myelogenetic cycles of regional maturation of the brain.
        in: Minkowski A. Regional Development of the Brain in Early Life. Blackwell Scientific, Oxford1967
        • Demerens C.
        • Stankoff B.
        • Logak M.
        • Anglade P.
        • Allinquant B.
        • Couraud F.
        • et al.
        Induction of myelination in the central nervous system by electrical activity.
        Proc Natl Acad Sci U S A. 1996; 93: 9887-9892
        • Ishibashi T.
        • Dakin K.A.
        • Stevens B.
        • Lee P.R.
        • Kozlov S.V.
        • Stewart C.L.
        • Fields R.D.
        Astrocytes promote myelination in response to electrical impulses.
        Neuron. 2006; 49: 823-832
        • Graff-Guerrero A.
        • González-Olvera J.
        • Mendoza-Espinosa Y.
        • Vaugier V.
        • García-Reyna J.C.
        Correlation between cerebral blood flow and items of the Hamilton Rating Scale for Depression in antidepressant-naive patients.
        J Affect Disord. 2004; 80: 55-63
        • Van der Werf Y.D.
        • Witter M.P.
        • Groenewegen H.J.
        The intralaminar and midline nuclei of the thalamus.
        Brain Res Brain Res Rev. 2002; 39: 107-140
        • Khan A.A.
        • Gardner C.O.
        • Prescott C.A.
        • Kendler K.S.
        Gender differences in the symptoms of major depression in opposite-sex dizygotic twin pairs.
        Am J Psychiatry. 2002; 159: 1427-1429
        • Vaishnavi S.
        • Taylor W.D.
        Neuroimaging in late-life depression.
        Int Rev Psychiatry. 2006; 18: 443-451
        • Hofer S.
        • Frahm J.
        Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging.
        Neuroimage. 2006; 32: 989-994
        • Vakili K.
        • Pillay S.S.
        • Lafer B.
        • Fava M.
        • Renshaw P.F.
        • Bonello-Cintron C.M.
        • Yurgelun-Todd D.A.
        Hippocampal volume in primary unipolar major depression: A magnetic resonance imaging study.
        Biol Psychiatry. 2000; 47: 1087-1090
        • MacQueen G.M.
        Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder.
        J Psychiatry Neurosci. 2009; 34: 343-349
        • Shah P.J.
        • Glabus M.F.
        • Goodwin G.M.
        • Ebmeier K.P.
        Chronic, treatment-resistant depression and right fronto-striatal atrophy.
        Br J Psychiatry. 2002; 180: 434-440
        • Grimm S.
        • Boesiger P.
        • Beck J.
        • Schuepbach D.
        • Bermpohl F.
        • Walter M.
        • et al.
        Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects.
        Neuropsychopharmacology. 2009; 34: 932-943
        • Kumari V.
        • Mitterschiffthaler M.T.
        • Teasdale J.D.
        • Malhi G.S.
        • Brown R.G.
        • Giampietro V.
        • et al.
        Neural abnormalities during cognitive generation of affect in treatment-resistant depression.
        Biol Psychiatry. 2003; 54: 777-791
        • Desseilles M.
        • Balteau E.
        • Sterpenich V.
        • Dang-Vu T.T.
        • Darsaud A.
        • Vandewalle G.
        • et al.
        Abnormal neural filtering of irrelevant visual information in depression.
        J Neurosci. 2009; 29: 1395-1403