Advertisement

Opioid–Dopamine Interactions: Implications for Substance Use Disorders and Their Treatment

  • Nora D. Volkow
    Correspondence
    Address correspondence to Nora D. Volkow, M.D., National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Mail Stop Code: 9581 Suite 5274, Bethesda, MD 20892
    Affiliations
    National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
      Two imaging reports in this volume highlight the importance of the interaction between the brain's opioid and dopamine (DA) systems in the reinforcing and addictive effects of substances of abuse. These studies use positron emission tomography (PET) to measure, in one instance (
      • Urban N.B.L.
      • Lawrence M.
      • Slifstein M.
      • Xu X.
      • Martinez D.
      • et al.
      Sex differences in striatal dopamine release in young adults after oral alcohol challenge: A positron emission tomography imaging study with [11C]raclopride.
      ), changes in DA induced by acute alcohol administration in healthy subjects (with [11C] raclopride, a radioligand that binds to D2 and D3 receptors (D2R and D3R) and that is sensitive to competition with endogenous DA) and, in the other (
      • Ghitza U.
      • Preston K.L.
      • Epstein D.H.
      • Kuwabara H.
      • Endres C.J.
      • Bencherif B.
      • et al.
      Brain mu-opioid receptor binding predicts treatment outcome in cocaine-abusing outpatients.
      ), μ opioid receptor (mOR) availability in cocaine abusers (with [11C] carfentanil, an mOR specific radioligand).
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Urban N.B.L.
        • Lawrence M.
        • Slifstein M.
        • Xu X.
        • Martinez D.
        • et al.
        Sex differences in striatal dopamine release in young adults after oral alcohol challenge: A positron emission tomography imaging study with [11C]raclopride.
        Biol Psychiatry. 2010; 68: 689-696
        • Ghitza U.
        • Preston K.L.
        • Epstein D.H.
        • Kuwabara H.
        • Endres C.J.
        • Bencherif B.
        • et al.
        Brain mu-opioid receptor binding predicts treatment outcome in cocaine-abusing outpatients.
        Biol Psychiatry. 2010; 68: 697-703
        • Koob G.F.
        Neural mechanisms of drug reinforcement.
        Ann N Y Acad Sci. 1992; 654: 171-191
        • Le Merrer J.
        • Becker J.A.
        • Befort K.
        • Kieffer B.L.
        Reward processing by the opioid system in the brain.
        Physiol Res. 2009; 89: 1379-1412
        • Pettinati H.M.
        • Kampman K.M.
        • Lynch K.G.
        • Suh J.J.
        • Dackis C.A.
        • Oslin D.W.
        • O'Brien C.P.
        Gender differences with high-dose naltrexone in patients with co-occurring cocaine and alcohol dependence.
        J Subst Abus Treat. 2008; 34: 378-390
        • Quintanilla M.E.
        • Bustamante D.
        • Tampier L.
        • Israel Y.
        • Herrera-Marschitz M.
        Dopamine release in the nucleus accumbens (shell) of two lines of rats selectively bred to prefer or avoid ethanol.
        Eur J Pharmacol. 2007; 573: 84-92
        • Volkow N.D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • Jayne M.
        • et al.
        Profound decreases in dopamine release in striatum in detoxified alcoholics: Possible orbitofrontal involvement.
        J Neurosci. 2007; 27: 12700-12706
        • Zilberman M.
        • Tavares H.
        • El-Guebaly N.
        Gender similarities and differences: The prevalence and course of alcohol- and other substance-related disorders.
        J Addict Dis. 2003; 22: 61-74
        • Zubieta J.K.
        • Gorelick D.A.
        • Stauffer R.
        • Ravert H.T.
        • Dannals R.F.
        • Frost J.J.
        Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving.
        Nat Med. 1996; 2: 1225-1229
        • Leri F.
        • Zhou Y.
        • Goddard B.
        • Levy A.
        • Jacklin D.
        • Kreek M.J.
        Steady-state methadone blocks cocaine seeking and cocaine-induced gene expression alterations in the rat brain.
        Eur Neuropsychopharmacol. 2009; 19: 238-249
        • McCann D.J.
        Potential of buprenorphine/naltrexone in treating polydrug addiction and co-occurring psychiatric disorders.
        Clin Pharmacol Ther. 2008; 83: 627-630
        • Burattini C.
        • Burbassi S.
        • Aicardi G.
        • Cervo L.
        Effects of naltrexone on cocaine- and sucrose-seeking behaviour in response to associated stimuli in rats.
        Int J Neuropsychopharmacol. 2008; 11: 103-109
        • Le Foll B.
        • Gallo A.
        • Le Strat Y.
        • Lu L.
        • Gorwood P.
        Genetics of dopamine receptors and drug addiction: A comprehensive review.
        Behav Pharmacol. 2009; 20: 1-17
        • Sora I.
        • Li B.
        • Igari M.
        • Hall F.S.
        • Ikeda K.
        Transgenic mice in the study of drug addiction and the effects of psychostimulant drugs.
        Ann N Y Acad Sci. 2010; 1187: 218-246

      Linked Article