Advertisement

A Meta-Analysis of Cytokines in Alzheimer's Disease

      Background

      Studies suggest that inflammation is involved in the neurodegenerative cascade leading to Alzheimer's disease (AD) pathology and symptoms. This study sought to quantitatively summarize the clinical cytokine data.

      Methods

      Original English language peer-reviewed studies measuring cytokine concentrations in AD and healthy control subjects were included. Mean (±standard deviation) cytokine concentrations for AD and control subjects were extracted.

      Results

      Forty studies measuring peripheral blood cytokine concentrations and 14 measuring cerebrospinal fluid (CSF) cytokine concentrations were included. In peripheral blood, there were significantly higher concentrations (weighted mean difference [95% confidence interval]) of interleukin (IL)-6 (2.86 [1.68, 4.04] pg/mL, p < .00001, N[AD/control subjects] = 985/680, 14 studies), tumor necrosis factor (TNF)-α (3.25 [.76, 5.74] pg/mL, p = .01, N = 680/447, 14 studies), IL-1β (.55 [.32, .78] pg/mL, p < .00001, N = 574/370, 10 studies), transforming growth factor (TGF)-β (67.23 [28.62, 105.83] pg/mL, p = .0006, N = 190/158, 5 studies), IL-12 (7.60 [5.58, 9.62] pg/mL, p < .00001, N = 148/106, 5 studies), and IL-18 (15.82 [1.98, 29.66] pg/mL, p = .03, N = 131/94, 4 studies) but not of IL-4, IL-8, IL-10, interferon-γ, or C-reactive protein in AD subjects compared with control subjects. There were significantly higher concentrations of TGF-β (7.81 [2.27, 13.35] pg/mL, p =.006, N = 113/114, 5 studies) but not IL-6, TNF-α, and IL-1β in the CSF of AD subjects compared with control subjects.

      Conclusions

      These results strengthen the clinical evidence that AD is accompanied by an inflammatory response, particularly higher peripheral concentrations of IL-6, TNF-α, IL-1β, TGF-β, IL-12 and IL-18 and higher CSF concentrations of TGF-β.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Holmes C.
        The genetics and molecular pathology of dementia.
        in: Jacoby R. Oppenheimer C. Dening T. Thomas A. Oxford Textbook of Old Age Psychiatry. Oxford University Press, Oxford, UK2008: 103-117
        • Bharadwaj P.R.
        • Dubey A.K.
        • Masters C.L.
        • Martins R.N.
        • Macreadie I.G.
        Abeta aggregation and possible implications in Alzheimer's disease pathogenesis.
        J Cell Mol Med. 2009; 13: 412-421
        • Karlnoski R.A.
        • Rosenthal A.
        • Kobayashi D.
        • Pons J.
        • Alamed J.
        • Mercer M.
        • et al.
        Suppression of amyloid deposition leads to long-term reductions in Alzheimer's pathologies in Tg2576 mice.
        J Neurosci. 2009; 29: 4964-4971
        • Cataldo A.M.
        • Paskevich P.A.
        • Kominami E.
        • Nixon R.A.
        Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease.
        Proc Natl Acad Sci U S A. 1991; 88: 10998-11002
        • Bancher C.
        • Brunner C.
        • Lassmann H.
        • Budka H.
        • Jellinger K.
        • Wiche G.
        • et al.
        Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease.
        Brain Res. 1989; 477: 90-99
        • Salloway S.
        • Sperling R.
        • Gilman S.
        • Fox N.C.
        • Blennow K.
        • Raskind M.
        • et al.
        A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease.
        Neurology. 2009; 73: 2061-2070
        • Aisen P.S.
        • Saumier D.
        • Briand R.
        • Laurin J.
        • Gervais F.
        • Tremblay P.
        • Garceau D.
        A phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease.
        Neurology. 2006; 67: 1757-1763
        • Kaduszkiewicz H.
        • Zimmermann T.
        • Beck-Bornholdt H.P.
        • van den Bussche H.
        Cholinesterase inhibitors for patients with Alzheimer's disease: Systematic review of randomised clinical trials.
        BMJ. 2005; 331: 321-327
        • McShane R.
        • Areosa Sastre A.
        • Minakaran N.
        Memantine for dementia.
        Cochrane Database Syst Rev. 2006; 2 (CD003154)
        • Courtney C.
        • Farrell D.
        • Gray R.
        • Hills R.
        • Lynch L.
        • Sellwood E.
        • et al.
        Long-term donepezil treatment in 565 patients with Alzheimer's disease (ad 2000): Randomised double-blind trial.
        Lancet. 2004; 363: 2105-2115
        • Gill S.S.
        • Anderson G.M.
        • Fischer H.D.
        • Bell C.M.
        • Li P.
        • Normand S.L.
        • Rochon P.A.
        Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: A population-based cohort study.
        Arch Intern Med. 2009; 169: 867-873
        • Wyss-Coray T.
        Inflammation in Alzheimer disease: Driving force, bystander or beneficial response?.
        Nat Med. 2006; 12: 1005-1015
        • Griffin W.S.
        • Mrak R.E.
        Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer's disease.
        J Leukoc Biol. 2002; 72: 233-238
        • Griffin W.S.
        • Stanley L.C.
        • Ling C.
        • White L.
        • MacLeod V.
        • Perrot L.J.
        • et al.
        Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease.
        Proc Natl Acad Sci U S A. 1989; 86: 7611-7615
        • Griffin W.S.
        • Sheng J.G.
        • Roberts G.W.
        • Mrak R.E.
        Interleukin-1 expression in different plaque types in Alzheimer's disease: Significance in plaque evolution.
        J Neuropathol Exp Neurol. 1995; 54: 276-281
        • Du Y.
        • Dodel R.C.
        • Eastwood B.J.
        • Bales K.R.
        • Gao F.
        • Lohmuller F.
        • et al.
        Association of an interleukin 1 alpha polymorphism with Alzheimer's disease.
        Neurology. 2000; 55: 480-483
        • Seshadri S.
        • Fitzpatrick A.L.
        • Ikram M.A.
        • DeStefano A.L.
        • Gudnason V.
        • Boada M.
        • et al.
        Genome-wide analysis of genetic loci associated with Alzheimer disease.
        JAMA. 2010; 303: 1832-1840
        • Lambert J.C.
        • Heath S.
        • Even G.
        • Campion D.
        • Sleegers K.
        • Hiltunen M.
        • et al.
        Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease.
        Nat Genet. 2009; 41: 1094-1099
        • Perry V.H.
        • Cunningham C.
        • Holmes C.
        Systemic infections and inflammation affect chronic neurodegeneration.
        Nat Rev Immunol. 2007; 7: 161-167
        • Rota E.
        • Bellone G.
        • Rocca P.
        • Bergamasco B.
        • Emanuelli G.
        • Ferrero P.
        Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer's disease patients.
        Neurol Sci. 2006; 27: 33-39
        • Tarkowski E.
        • Blennow K.
        • Wallin A.
        • Tarkowski A.
        Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia.
        J Clin Immunol. 1999; 19: 223-230
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gotzsche P.C.
        • Ioannidis J.P.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration.
        PLoS Med. 2009; 6: e1000100
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        American Psychiatric Association, Washington, DC2000
        • Harris R.J.
        • Bradburn M.J.
        • Deeks J.J.
        • Harbord R.M.
        • Altman D.G.
        • Sterne J.A.C.
        Metan: Fixed- and random-effects meta-analysis.
        Stata J. 2008; 8: 3-28
        • Higgins J.P.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558
        • Harbord R.M.
        • Higgins J.P.
        Meta-regression in Stata.
        Stata J. 2008; 8: 493-519
        • Egger M.
        • Davey S.G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Begg C.B.
        • Mazumdar M.
        Operating characteristics of a rank correlation test for publication bias.
        Biometrics. 1994; 50: 1088-1101
        • Altman D.G.
        Confidence intervals for the number needed to treat.
        BMJ. 1998; 317: 1309-1312
        • Aisen P.S.
        • Marin D.
        • Altstiel L.
        • Goodwin C.
        • Baruch B.
        • Jacobson R.
        • et al.
        A pilot study of prednisone in Alzheimer's disease.
        Dementia. 1996; 7: 201-206
        • Alvarez X.A.
        • Fernandez-Novoa L.
        • Caamano J.
        • Corzo L.
        • Zas R.
        • Beyer K.
        • et al.
        Cerebrovascular changes associated with interleukin-1beta (IL-1beta) and histamine (HA) levels in Alzheimer's disease.
        Ann N Y Acad Sci. 1997; 826: 375-378
        • Alvarez X.A.
        • Mouzo R.
        • Pichel V.
        • Perez P.
        • Laredo M.
        • Fernandez-Novoa L.
        • et al.
        Double-blind placebo-controlled study with citicoline in APOE genotyped Alzheimer's disease patients.
        Methods Find Exp Clin Pharmacol. 1999; 21: 633-644
        • Bagli M.
        • Papassotiropoulos A.
        • Hampel H.
        • Becker K.
        • Jessen F.
        • Burger K.
        • et al.
        Polymorphisms of the gene encoding the inflammatory cytokine interleukin-6 determine the magnitude of the increase in soluble interleukin-6 receptor levels in Alzheimer's disease.
        Eur Arch Psychiatry Clin Neurosci. 2003; 253: 44-48
        • Blasko I.
        • Knaus G.
        • Weiss E.
        • Kemmler G.
        • Winkler C.
        • Falkensammer G.
        • et al.
        Cognitive deterioration in Alzheimer's disease is accompanied by increase of plasma neopterin.
        J Psychiatr Res. 2007; 41: 694-701
        • Locascio J.J.
        • Fukumoto H.
        • Yap L.
        • Bottiglieri T.
        • Growdon J.H.
        • Hyman B.T.
        • Irizarry M.C.
        Plasma amyloid beta-protein and C-reactive protein in relation to the rate of progression of Alzheimer disease.
        Arch Neurol. 2008; 65: 776-785
        • Stankovic G.
        • Sparks D.L.
        Change in circulating C-reactive protein is not associated with atorvastatin treatment in Alzheimer's disease.
        Neurol Res. 2006; 28: 621-624
        • Sun Y.X.
        • Minthon L.
        • Wallmark A.
        • Warkentin S.
        • Blennow K.
        • Janciauskiene S.
        Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer's disease.
        Dement Geriatr Cogn Disord. 2003; 16: 136-144
        • Zuliani G.
        • Guerra G.
        • Ranzini M.
        • Rossi L.
        • Munari M.R.
        • Zurlo A.
        • et al.
        High interleukin-6 plasma levels are associated with functional impairment in older patients with vascular dementia.
        Int J Geriatr Psychiatry. 2007; 22: 305-311
        • Paganelli R.
        • Di Iorio A.
        • Patricelli L.
        • Ripani F.
        • Sparvieri E.
        • Faricelli R.
        • et al.
        Proinflammatory cytokines in sera of elderly patients with dementia: Levels in vascular injury are higher than those of mild-moderate Alzheimer's disease patients.
        Exp Gerontol. 2002; 37: 257-263
        • Lanzrein A.S.
        • Johnston C.M.
        • Perry V.H.
        • Jobst K.A.
        • King E.M.
        • Smith A.D.
        Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: Interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factor-alpha, the soluble tumor necrosis factor receptors I and. II, and alpha1-antichymotrypsin.
        Alzheimer Dis Assoc Disord. 1998; 12: 215-227
        • Angelis P.
        • Scharf S.
        • Mander A.
        • Vajda F.
        • Christophidis N.
        Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer's disease.
        Neurosci Lett. 1998; 244: 106-108
        • De Luigi A.
        • Pizzimenti S.
        • Quadri P.
        • Lucca U.
        • Tettamanti M.
        • Fragiacomo C.
        • De Simoni M.G.
        Peripheral inflammatory response in Alzheimer's disease and multiinfarct dementia.
        Neurobiol Dis. 2002; 11: 308-314
        • De Servi B.
        • La Porta C.A.
        • Bontempelli M.
        • Comolli R.
        Decrease of TGF-beta1 plasma levels and increase of nitric oxide synthase activity in leukocytes as potential biomarkers of Alzheimer's disease.
        Exp Gerontol. 2002; 37: 813-821
        • Dziedzic T.
        • Wybranska I.
        • Dembinska-Kiec A.
        • Klimkowicz A.
        • Slowik A.
        • Pankiewicz J.
        • et al.
        Dexamethasone inhibits TNF-alpha synthesis more effectively in Alzheimer's disease patients than in healthy individuals.
        Dement Geriatr Cogn Disord. 2003; 16: 283-286
        • Lindberg C.
        • Chromek M.
        • Ahrengart L.
        • Brauner A.
        • Schultzberg M.
        • Garlind A.
        Soluble interleukin-1 receptor type II, IL-18 and caspase-1 in mild cognitive impairment and severe Alzheimer's disease.
        Neurochem Int. 2005; 46: 551-557
        • Lombardi V.R.
        • Garcia M.
        • Rey L.
        • Cacabelos R.
        Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer's disease (AD) individuals.
        J Neuroimmunol. 1999; 97: 163-171
        • Mocali A.
        • Cedrola S.
        • Della M.N.
        • Bontempelli M.
        • Mitidieri V.A.
        • Bavazzano A.
        • et al.
        Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease.
        Exp Gerontol. 2004; 39: 1555-1561
        • Schmidt R.
        • Schmidt H.
        • Curb J.D.
        • Masaki K.
        • White L.R.
        • Launer L.J.
        Early inflammation and dementia: A 25-year follow-up of the Honolulu-Asia Aging Study.
        Ann Neurol. 2002; 52: 168-174
        • Teunissen C.E.
        • Lutjohann D.
        • von Bergmann K.
        • Verhey F.
        • Vreeling F.
        • Wauters A.
        • et al.
        Combination of serum markers related to several mechanisms in Alzheimer's disease.
        Neurobiol Aging. 2003; 24: 893-902
        • van Duijn C.M.
        • Hofman A.
        • Nagelkerken L.
        Serum levels of interleukin-6 are not elevated in patients with Alzheimer's disease.
        Neurosci Lett. 1990; 108: 350-354
        • Zaciragic A.
        • Lepara O.
        • Valjevac A.
        • Arslanagic S.
        • Fajkic A.
        • Hadzovic-Dzuvo A.
        • et al.
        Elevated serum C-reactive protein concentration in Bosnian patients with probable Alzheimer's disease.
        J Alzheimers Dis. 2007; 12: 151-156
        • De Luigi A.
        • Fragiacomo C.
        • Lucca U.
        • Quadri P.
        • Tettamanti M.
        • Grazia De Simoni M.
        Inflammatory markers in Alzheimer's disease and multi-infarct dementia.
        Mech Ageing Dev. 2001; 122: 1985-1995
        • Ciabattoni G.
        • Porreca E.
        • Di Febbo C.
        • Di Iorio A.
        • Paganelli R.
        • Bucciarelli T.
        • et al.
        Determinants of platelet activation in Alzheimer's disease.
        Neurobiol Aging. 2007; 28: 336-342
        • Inspector M.
        • Aharon-Perez J.
        • Glass-Marmor L.
        • Miller A.
        Matrix metalloproteinase-9, its tissue inhibitor (TIMP)-1 and CRP in Alzheimer's disease.
        Eur Neurol. 2005; 53: 155-157
        • Bonaccorso S.
        • Lin A.
        • Song C.
        • Verkerk R.
        • Kenis G.
        • Bosmans E.
        • et al.
        Serotonin-immune interactions in elderly volunteers and in patients with Alzheimer's disease (DAT): Lower plasma tryptophan availability to the brain in the elderly and increased serum interleukin-6 in DAT.
        Aging. 1998; 10: 316-323
        • Maes M.
        • DeVos N.
        • Wauters A.
        • Demedts P.
        • Maurits V.W.
        • Neels H.
        • et al.
        Inflammatory markers in younger vs elderly normal volunteers and in patients with Alzheimer's disease.
        J Psychiatr Res. 1999; 33: 397-405
        • Zuliani G.
        • Cavalieri M.
        • Galvani M.
        • Passaro A.
        • Munari M.R.
        • Bosi C.
        • et al.
        Markers of endothelial dysfunction in older subjects with late onset Alzheimer's disease or vascular dementia.
        J Neurol Sci. 2008; 272: 164-170
        • Hasegawa Y.
        • Sawada M.
        • Ozaki N.
        • Inagaki T.
        • Suzumura A.
        Increased soluble tumor necrosis factor receptor levels in the serum of elderly people.
        Gerontology. 2000; 46: 185-188
        • Pirttila T.
        • Mehta P.D.
        • Frey H.
        • Wisniewski H.M.
        Alpha 1-antichymotrypsin and IL-1beta are not increased in CSF or serum in Alzheimer's disease.
        Neurobiol Aging. 1994; 15: 313-317
        • Richartz E.
        • Stransky E.
        • Batra A.
        • Simon P.
        • Lewczuk P.
        • Buchkremer G.
        • et al.
        Decline of immune responsiveness: A pathogenetic factor in Alzheimer's disease?.
        J Psychiatr Res. 2005; 39: 535-543
        • Magaki S.
        • Mueller C.
        • Dickson C.
        • Kirsch W.
        Increased production of inflammatory cytokines in mild cognitive impairment.
        Exp Gerontol. 2007; 42: 233-240
        • Sala G.
        • Galimberti G.
        • Canevari C.
        • Raggi M.E.
        • Isella V.
        • Facheris M.
        • et al.
        Peripheral cytokine release in Alzheimer patients: Correlation with disease severity.
        Neurobiol Aging. 2003; 24: 909-914
        • Zuliani G.
        • Ranzini M.
        • Guerra G.
        • Rossi L.
        • Munari M.R.
        • Zurlo A.
        • et al.
        Plasma cytokines profile in older subjects with late onset Alzheimer's disease or vascular dementia.
        J Psychiatr Res. 2007; 41: 686-693
        • Licastro F.
        • Sirri V.
        • Trere D.
        • Davis L.J.
        Monomeric and polymeric forms of alpha-1 antichymotrypsin in sera from patients with probable late onset Alzheimer's disease.
        Dement Geriatr Cogn Disord. 1997; 8: 337-342
        • Singh V.K.
        • Guthikonda P.
        Circulating cytokines in Alzheimer's disease.
        J Psychiatr Res. 1997; 31: 657-660
        • Licastro F.
        • Pedrini S.
        • Caputo L.
        • Annoni G.
        • Davis L.J.
        • Ferri C.
        • et al.
        Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer's disease: Peripheral inflammation or signals from the brain?.
        J Neuroimmunol. 2000; 103: 97-102
        • Shibata N.
        • Ohnuma T.
        • Takahashi T.
        • Baba H.
        • Ishizuka T.
        • Ohtsuka M.
        • et al.
        Effect of IL-6 polymorphism on risk of Alzheimer disease: Genotype-phenotype association study in Japanese cases.
        Am J Med Genet. 2002; 114: 436-439
        • Licastro F.
        • Grimaldi L.M.
        • Bonafe M.
        • Martina C.
        • Olivieri F.
        • Cavallone L.
        • et al.
        Interleukin-6 gene alleles affect the risk of Alzheimer's disease and levels of the cytokine in blood and brain.
        Neurobiol Aging. 2003; 24: 921-926
        • Reale M.
        • Iarlori C.
        • Gambi F.
        • Feliciani C.
        • Salone A.
        • Toma L.
        • et al.
        Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines.
        J Neuroimmunol. 2004; 148: 162-171
        • Richartz E.
        • Batra A.
        • Simon P.
        • Wormstall H.
        • Bartels M.
        • Buchkremer G.
        • et al.
        Diminished production of proinflammatory cytokines in patients with Alzheimer's disease.
        Dement Geriatr Cogn Disord. 2005; 19: 184-188
        • Angelopoulos P.
        • Agouridaki H.
        • Vaiopoulos H.
        • Siskou E.
        • Doutsou K.
        • Costa V.
        • Baloyiannis S.I.
        Cytokines in Alzheimer's disease and vascular dementia.
        Int J Neurosci. 2008; 118: 1659-1672
        • Baranowska-Bik A.
        • Bik W.
        • Wolinska-Witort E.
        • Martynska L.
        • Chmielowska M.
        • Barcikowska M.
        • Baranowska B.
        Plasma beta amyloid and cytokine profile in women with Alzheimer's disease.
        Neuro Endocrinol Lett. 2008; 29: 75-79
        • Bermejo P.
        • Martin-Aragon S.
        • Benedi J.
        • Susin C.
        • Felici E.
        • Gil P.
        • et al.
        Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease.
        Immunol Lett. 2008; 117: 198-202
        • Bonotis K.
        • Krikki E.
        • Holeva V.
        • Aggouridaki C.
        • Costa V.
        • Baloyannis S.
        Systemic immune aberrations in Alzheimer's disease patients.
        J Neuroimmunol. 2008; 193: 183-187
        • Fillit H.
        • Ding W.H.
        • Buee L.
        • Kalman J.
        • Altstiel L.
        • Lawlor B.
        • Wolf-Klein G.
        Elevated circulating tumor necrosis factor levels in Alzheimer's disease.
        Neurosci Lett. 1991; 129: 318-320
        • Cacabelos R.
        • Alvarez X.A.
        • Franco-Maside A.
        • Fernandez-Novoa L.
        • Caamano J.
        Serum tumor necrosis factor (TNF) in Alzheimer's disease and multi-infarct dementia.
        Methods Find Exp Clin Pharmacol. 1994; 16: 29-35
        • Alvarez X.A.
        • Franco A.
        • Fernandez-Novoa L.
        • Cacabelos R.
        Blood levels of histamine, IL-1beta, and TNF-alpha in patients with mild to moderate Alzheimer disease.
        Mol Chem Neuropathol. 1996; 29: 237-252
        • Yasutake C.
        • Kuroda K.
        • Yanagawa T.
        • Okamura T.
        • Yoneda H.
        Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: Comparison between Alzheimer's disease and vascular dementia.
        Eur Arch Psychiatry Clin Neurosci. 2006; 256: 402-406
        • Alvarez A.
        • Cacabelos R.
        • Sanpedro C.
        • Garcia-Fantini M.
        • Aleixandre M.
        Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease.
        Neurobiol Aging. 2007; 28: 533-536
        • Choi C.
        • Jeong J.H.
        • Jang J.S.
        • Choi K.
        • Lee J.
        • Kwon J.
        • et al.
        Multiplex analysis of cytokines in the serum and cerebrospinal fluid of patients with Alzheimer's disease by color-coded bead technology.
        J Clin Neurol. 2008; 4: 84-88
        • Yang L.
        • Lu R.
        • Jiang L.
        • Liu Z.
        • Peng Y.
        Expression and genetic analysis of tumor necrosis factor-alpha (TNF-alpha) G-308A polymorphism in sporadic Alzheimer's disease in a Southern China population.
        Brain Res. 2009; 1247: 178-181
        • Cacabelos R.
        • Barquero M.
        • Garcia P.
        • Alvarez X.A.
        • Varela de Seijas E.
        Cerebrospinal fluid interleukin-1beta (IL-1beta) in Alzheimer's disease and neurological disorders.
        Methods Find Exp Clin Pharmacol. 1991; 13: 455-458
        • Cacabelos R.
        • Alvarez X.A.
        • Franco-Maside A.
        • Fernandez-Novoa L.
        • Caamano J.
        Effect of CDP-choline on cognition and immune function in Alzheimer's disease and multi-infarct dementia.
        Ann N Y Acad Sci. 1993; 695: 321-323
        • Licastro F.
        • Pedrini S.
        • Ferri C.
        • Casadei V.
        • Govoni M.
        • Pession A.
        • et al.
        Gene polymorphism affecting alpha1-antichymotrypsin and interleukin-1 plasma levels increases Alzheimer's disease risk.
        Ann Neurol. 2000; 48: 388-391
        • Forlenza O.V.
        • Diniz B.S.
        • Talib L.L.
        • Mendonca V.A.
        • Ojopi E.B.
        • Gattaz W.F.
        • et al.
        Increased serum IL-1beta level in Alzheimer's disease and mild cognitive impairment.
        Dement Geriatr Cogn Disord. 2009; 28: 507-512
        • Lawlor B.A.
        • Swanwick G.R.
        • Feighery C.
        • Walsh J.B.
        • Coakley D.
        Acute phase reactants in Alzheimer's disease.
        Biol Psychiatry. 1996; 39: 1051-1052
        • Licastro F.
        • Pedrini S.
        • Davis L.J.
        • Caputo L.
        • Tagliabue J.
        • Savorani G.
        • et al.
        Alpha-1-antichymotrypsin and oxidative stress in the peripheral blood from patients with probable Alzheimer disease: A short-term longitudinal study.
        Alzheimer Dis Assoc Disord. 2001; 15: 51-55
        • Yamamoto H.
        • Watanabe T.
        • Miyazaki A.
        • Katagiri T.
        • Idei T.
        • Iguchi T.
        • et al.
        High prevalence of Chlamydia pneumoniae antibodies and increased high-sensitive C-reactive protein in patients with vascular dementia.
        J Am Geriatr Soc. 2005; 53: 583-589
        • Davis G.K.
        • Baboolal N.S.
        • Seales D.
        • Ramchandani J.
        • McKell S.
        • McRae A.
        Potential biomarkers for dementia in Trinidad and Tobago.
        Neurosci Lett. 2007; 424: 27-30
        • Chao C.C.
        • Hu S.
        • Frey 2nd, W.H.
        • Ala T.A.
        • Tourtellotte W.W.
        • Peterson P.K.
        Transforming growth factor beta in Alzheimer's disease.
        Clin Diagn Lab Immunol. 1994; 1: 109-110
        • Malaguarnera L.
        • Motta M.
        • Di Rosa M.
        • Anzaldi M.
        • Malaguarnera M.
        Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer's disease and vascular dementia.
        Neuropathology. 2006; 26: 307-312
        • Motta M.
        • Imbesi R.
        • Di Rosa M.
        • Stivala F.
        • Malaguarnera L.
        Altered plasma cytokine levels in Alzheimer's disease: Correlation with the disease progression.
        Immunol Lett. 2007; 114: 46-51
        • Rodriguez-Rodriguez E.
        • Sanchez-Juan P.
        • Mateo I.
        • Llorca J.
        • Infante J.
        • Garcia-Gorostiaga I.
        • et al.
        Serum levels and genetic variation of TGF-beta1 are not associated with Alzheimer's disease.
        Acta Neurol Scand. 2007; 116: 409-412
        • Tarkowski E.
        • Wallin A.
        • Regland B.
        • Blennow K.
        • Tarkowski A.
        Local and systemic GM-CSF increase in Alzheimer's disease and vascular dementia.
        Acta Neurol Scand. 2001; 103: 166-174
        • Shibata N.
        • Ohnuma T.
        • Takahashi T.
        • Baba H.
        • Ishizuka T.
        • Ohtsuka M.
        • et al.
        The effect of IL4 +33C/T polymorphism on risk of Japanese sporadic Alzheimer's disease.
        Neurosci Lett. 2002; 323: 161-163
        • Leszek J.
        • Malyszczak K.
        • Bartys A.
        • Staniszewska M.
        • Gamian A.
        Analysis of serum of patients with Alzheimer's disease for the level of advanced glycation end products.
        Am J Alzheimers Dis Other Demen. 2006; 21: 360-365
        • Guerreiro R.J.
        • Santana I.
        • Bras J.M.
        • Santiago B.
        • Paiva A.
        • Oliveira C.
        Peripheral inflammatory cytokines as biomarkers in Alzheimer's disease and mild cognitive impairment.
        Neurodegener Dis. 2007; 4: 406-412
        • Lee K.S.
        • Chung J.H.
        • Lee K.H.
        • Shin M.J.
        • Oh B.H.
        • Hong C.H.
        Bioplex analysis of plasma cytokines in Alzheimer's disease and mild cognitive impairment.
        Immunol Lett. 2008; 121: 105-109
        • Bossu P.
        • Ciaramella A.
        • Salani F.
        • Bizzoni F.
        • Varsi E.
        • Di Iulio F.
        • et al.
        Interleukin-18 produced by peripheral blood cells is increased in Alzheimer's disease and correlates with cognitive impairment.
        Brain Behav Immun. 2008; 22: 487-492
        • Rentzos M.
        • Paraskevas G.P.
        • Kapaki E.
        • Nikolaou C.
        • Zoga M.
        • Rombos A.
        • et al.
        Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia.
        J Neurol Sci. 2006; 249: 110-114
        • Wada-Isoe K.
        • Wakutani Y.
        • Urakami K.
        • Nakashima K.
        Elevated interleukin-6 levels in cerebrospinal fluid of vascular dementia patients.
        Acta Neurol Scand. 2004; 110: 124-127
        • Van Everbroeck B.
        • Dewulf E.
        • Pals P.
        • Lubke U.
        • Martin J.J.
        • Cras P.
        The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease.
        Neurobiol Aging. 2002; 23: 59-64
        • Rentzos M.
        • Zoga M.
        • Paraskevas G.P.
        • Kapaki E.
        • Rombos A.
        • Nikolaou C.
        • et al.
        IL-15 is elevated in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia.
        J Geriatr Psychiatry Neurol. 2006; 19: 114-117
        • Jia J.P.
        • Meng R.
        • Sun Y.X.
        • Sun W.J.
        • Ji X.M.
        • Jia L.F.
        Cerebrospinal fluid tau, Abeta1-42 and inflammatory cytokines in patients with Alzheimer's disease and vascular dementia.
        Neurosci Lett. 2005; 383: 12-16
        • Marz P.
        • Heese K.
        • Hock C.
        • Golombowski S.
        • Muller-Spahn F.
        • Rose-John S.
        • Otten U.
        Interleukin-6 (IL-6) and soluble forms of IL-6 receptors are not altered in cerebrospinal fluid of Alzheimer's disease patients.
        Neurosci Lett. 1997; 239: 29-32
        • Blum-Degen D.
        • Muller T.
        • Kuhn W.
        • Gerlach M.
        • Przuntek H.
        • Riederer P.
        Interleukin-1beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients.
        Neurosci Lett. 1995; 202: 17-20
        • Galimberti D.
        • Schoonenboom N.
        • Scheltens P.
        • Fenoglio C.
        • Bouwman F.
        • Venturelli E.
        • et al.
        Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease.
        Arch Neurol. 2006; 63: 538-543
        • Duplan L.
        • Michel B.
        • Boucraut J.
        • Barthellemy S.
        • Desplat-Jego S.
        • Marin V.
        • et al.
        Lithostathine and pancreatitis-associated protein are involved in the very early stages of Alzheimer's disease.
        Neurobiol Aging. 2001; 22: 79-88
        • Garlind A.
        • Brauner A.
        • Hojeberg B.
        • Basun H.
        • Schultzberg M.
        Soluble interleukin-1 receptor type II levels are elevated in cerebrospinal fluid in Alzheimer's disease patients.
        Brain Res. 1999; 826: 112-116
        • Galimberti D.
        • Schoonenboom N.
        • Scheltens P.
        • Fenoglio C.
        • Venturelli E.
        • Pijnenburg Y.A.
        • et al.
        Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration.
        Neurology. 2006; 66: 146-147
        • Galimberti D.
        • Schoonenboom N.
        • Scarpini E.
        • Scheltens P.
        Chemokines in serum and cerebrospinal fluid of Alzheimer's disease patients.
        Ann Neurol. 2003; 53: 547-548
        • Zhang J.
        • Sokal I.
        • Peskind E.R.
        • Quinn J.F.
        • Jankovic J.
        • Kenney C.
        • et al.
        CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases.
        Am J Clin Pathol. 2008; 129: 526-529
        • Hampel H.
        • Schoen D.
        • Schwarz M.J.
        • Kotter H.U.
        • Schneider C.
        • Sunderland T.
        • et al.
        Interleukin-6 is not altered in cerebrospinal fluid of first-degree relatives and patients with Alzheimer's disease.
        Neurosci Lett. 1997; 228: 143-146
        • Rosler N.
        • Wichart I.
        • Jellinger K.A.
        Intra vitam lumbar and post mortem ventricular cerebrospinal fluid immunoreactive interleukin-6 in Alzheimer's disease patients.
        Acta Neurol Scand. 2001; 103: 126-130
        • Rosler N.
        • Wichart I.
        • Jellinger K.A.
        Clinical significance of neurobiochemical profiles in the lumbar cerebrospinal fluid of Alzheimer's disease patients.
        J Neural Transm. 2001; 108: 231-246
        • Yamada K.
        • Kono K.
        • Umegaki H.
        • Yamada K.
        • Iguchi A.
        • Fukatsu T.
        • et al.
        Decreased interleukin-6 level in the cerebrospinal fluid of patients with Alzheimer-type dementia.
        Neurosci Lett. 1995; 186: 219-221
        • Hampel H.
        • Teipel S.J.
        • Padberg F.
        • Haslinger A.
        • Riemenschneider M.
        • Schwarz M.J.
        • et al.
        Discriminant power of combined cerebrospinal fluid tau protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer's disease.
        Brain Res. 1999; 823: 104-112
        • Martinez M.
        • Fernandez-Vivancos E.
        • Frank A.
        • De la Fuente M.
        • Hernanz A.
        Increased cerebrospinal fluid fas (Apo-1) levels in Alzheimer's disease.
        Brain Res. 2000; 869: 216-219
        • Gomez-Tortosa E.
        • Gonzalo I.
        • Fanjul S.
        • Sainz M.J.
        • Cantarero S.
        • Cemillan C.
        • et al.
        Cerebrospinal fluid markers in dementia with Lewy bodies compared with Alzheimer disease.
        Arch Neurol. 2003; 60: 1218-1222
        • Galimberti D.
        • Venturelli E.
        • Fenoglio C.
        • Guidi I.
        • Villa C.
        • Bergamaschini L.
        • et al.
        Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer's disease and frontotemporal lobar degeneration.
        J Neurol. 2008; 255: 539-544
        • Tarkowski E.
        • Issa R.
        • Sjogren M.
        • Wallin A.
        • Blennow K.
        • Tarkowski A.
        • Kumar P.
        Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia.
        Neurobiol Aging. 2002; 23: 237-243
        • Zetterberg H.
        • Andreasen N.
        • Blennow K.
        Increased cerebrospinal fluid levels of transforming growth factor-beta1 in Alzheimer's disease.
        Neurosci Lett. 2004; 367: 194-196
        • Blasko I.
        • Lederer W.
        • Oberbauer H.
        • Walch T.
        • Kemmler G.
        • Hinterhuber H.
        • et al.
        Measurement of thirteen biological markers in CSF of patients with Alzheimer's disease and other dementias.
        Dement Geriatr Cogn Disord. 2006; 21: 9-15
        • Tarkowski E.
        • Liljeroth A.M.
        • Nilsson A.
        • Ricksten A.
        • Davidsson P.
        • Minthon L.
        • Blennow K.
        TNF gene polymorphism and its relation to intracerebral production of TNFalpha and TNFbeta in AD.
        Neurology. 2000; 54: 2077-2081
        • Powrie F.
        • Menon S.
        • Coffman R.L.
        Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo.
        Eur J Immunol. 1993; 23: 3043-3049
        • Ansel K.M.
        • Djuretic I.
        • Tanasa B.
        • Rao A.
        Regulation of Th2 differentiation and IL4 locus accessibility.
        Annu Rev Immunol. 2006; 24: 607-656
        • Fiorentino D.F.
        • Zlotnik A.
        • Vieira P.
        • Mosmann T.R.
        • Howard M.
        • Moore K.W.
        • O'Garra A.
        IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells.
        J Immunol. 1991; 146: 3444-3451
        • Hsu D.H.
        • Moore K.W.
        • Spits H.
        Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity.
        Int Immunol. 1992; 4: 563-569
        • Puren A.J.
        • Fantuzzi G.
        • Gu Y.
        • Su M.S.
        • Dinarello C.A.
        Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells.
        J Clin Invest. 1998; 101: 711-721
        • Bogdan C.
        • Paik J.
        • Vodovotz Y.
        • Nathan C.
        Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10.
        J Biol Chem. 1992; 267: 23301-23308
        • Zheng Y.
        • Rudensky A.Y.
        Foxp3 in control of the regulatory T cell lineage.
        Nat Immunol. 2007; 8: 457-462
        • Veldhoen M.
        • Hocking R.J.
        • Atkins C.J.
        • Locksley R.M.
        • Stockinger B.
        TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.
        Immunity. 2006; 24: 179-189
        • Town T.
        • Laouar Y.
        • Pittenger C.
        • Mori T.
        • Szekely C.A.
        • Tan J.
        • et al.
        Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology.
        Nat Med. 2008; 14: 681-687
        • Jaeger L.B.
        • Dohgu S.
        • Sultana R.
        • Lynch J.L.
        • Owen J.B.
        • Erickson M.A.
        • et al.
        Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: A mechanism for inflammation in the progression of Alzheimer's disease.
        Brain Behav Immun. 2009; 23: 507-517
        • Blasko I.
        • Apochal A.
        • Boeck G.
        • Hartmann T.
        • Grubeck-Loebenstein B.
        • Ransmayr G.
        Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells.
        Neurobiol Dis. 2001; 8: 1094-1101
        • Xiao B.G.
        • Link H.
        IFN-gamma production of adult rat astrocytes triggered by TNF-alpha.
        Neuroreport. 1998; 9: 1487-1490
        • Maier S.F.
        Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition.
        Brain Behav Immun. 2003; 17: 69-85
        • Connor T.J.
        • Starr N.
        • O'Sullivan J.B.
        • Harkin A.
        Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: A role for IFN-gamma?.
        Neurosci Lett. 2008; 441: 29-34
        • El Khoury J.
        • Toft M.
        • Hickman S.E.
        • Means T.K.
        • Terada K.
        • Geula C.
        • Luster A.D.
        Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease.
        Nat Med. 2007; 13: 432-438
        • Banks W.A.
        • Kastin A.J.
        • Broadwell R.D.
        Passage of cytokines across the blood-brain barrier.
        Neuroimmunomodulation. 1995; 2: 241-248
        • Banks W.A.
        • Farr S.A.
        • Morley J.E.
        Entry of blood-borne cytokines into the central nervous system: Effects on cognitive processes.
        Neuroimmunomodulation. 2002; 10: 319-327
        • Skinner R.A.
        • Gibson R.M.
        • Rothwell N.J.
        • Pinteaux E.
        • Penny J.I.
        Transport of interleukin-1 across cerebromicrovascular endothelial cells.
        Br J Pharmacol. 2009; 156: 1115-1123
        • Banks W.A.
        • Kastin A.J.
        • Gutierrez E.G.
        Penetration of interleukin-6 across the murine blood-brain barrier.
        Neurosci Lett. 1994; 179: 53-56
        • Gutierrez E.G.
        • Banks W.A.
        • Kastin A.J.
        Murine tumor necrosis factor alpha is transported from blood to brain in the mouse.
        J Neuroimmunol. 1993; 47: 169-176
        • Laflamme N.
        • Rivest S.
        Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kappaB alpha within specific cellular populations of the rat brain.
        J Neurochem. 1999; 73: 309-321
        • Rivest S.
        • Lacroix S.
        • Vallieres L.
        • Nadeau S.
        • Zhang J.
        • Laflamme N.
        How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli.
        Proc Soc Exp Biol Med. 2000; 223: 22-38
        • El Khoury J.
        • Luster A.D.
        Mechanisms of microglia accumulation in Alzheimer's disease: Therapeutic implications.
        Trends Pharmacol Sci. 2008; 29: 626-632
        • Hanisch U.K.
        Microglia as a source and target of cytokines.
        Glia. 2002; 40: 140-155
        • Quan N.
        • Whiteside M.
        • Herkenham M.
        Time course and localization patterns of interleukin-1beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide.
        Neuroscience. 1998; 83: 281-293
        • Akiyama H.
        • Barger S.
        • Barnum S.
        • Bradt B.
        • Bauer J.
        • Cole G.M.
        • et al.
        Inflammation and Alzheimer's disease.
        Neurobiol Aging. 2000; 21: 383-421
        • Perry V.H.
        • Newman T.A.
        • Cunningham C.
        The impact of systemic infection on the progression of neurodegenerative disease.
        Nat Rev Neurosci. 2003; 4: 103-112
        • Schrocksnadel K.
        • Wirleitner B.
        • Winkler C.
        • Fuchs D.
        Monitoring tryptophan metabolism in chronic immune activation.
        Clin Chim Acta. 2006; 364: 82-90
        • Heyes M.P.
        • Saito K.
        • Markey S.P.
        Human macrophages convert L-Tryptophan into the neurotoxin quinolinic acid.
        Biochem J. 1992; 283: 633-635
        • Mellor A.L.
        • Munn D.H.
        Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation?.
        Immunol Today. 1999; 20: 469-473
        • Fukui S.
        • Schwarcz R.
        • Rapoport S.I.
        • Takada Y.
        • Smith Q.R.
        Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism.
        J Neurochem. 1991; 56: 2007-2017
        • Hainz U.
        • Obexer P.
        • Winkler C.
        • Sedlmayr P.
        • Takikawa O.
        • Greinix H.
        • et al.
        Monocyte-mediated T-cell suppression and augmented monocyte tryptophan catabolism after human hematopoietic stem-cell transplantation.
        Blood. 2005; 105: 4127-4134
        • Nemeth H.
        • Toldi J.
        • Vecsei L.
        Role of kynurenines in the central and peripheral nervous systems.
        Curr Neurovasc Res. 2005; 2: 249-260
        • Guillemin G.J.
        • Brew B.J.
        • Noonan C.E.
        • Takikawa O.
        • Cullen K.M.
        Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus.
        Neuropathol Appl Neurobiol. 2005; 31: 395-404
        • Rahman A.
        • Ting K.
        • Cullen K.M.
        • Braidy N.
        • Brew B.J.
        • Guillemin G.J.
        The excitotoxin quinolinic acid induces tau phosphorylation in human neurons.
        PLoS ONE. 2009; 4: e6344
        • Widner B.
        • Leblhuber F.
        • Walli J.
        • Tilz G.P.
        • Demel U.
        • Fuchs D.
        Tryptophan degradation and immune activation in Alzheimer's disease.
        J Neural Transm. 2000; 107: 343-353
        • Dunn N.
        • Mullee M.
        • Perry V.H.
        • Holmes C.
        Association between dementia and infectious disease: Evidence from a case-control study.
        Alzheimer Dis Assoc Disord. 2005; 19: 91-94
        • Kamer A.R.
        • Craig R.G.
        • Dasanayake A.P.
        • Brys M.
        • Glodzik-Sobanska L.
        • de Leon M.J.
        Inflammation and Alzheimer's disease: Possible role of periodontal diseases.
        Alzheimers Dement. 2008; 4: 242-250
        • Kamer A.R.
        • Craig R.G.
        • Pirraglia E.
        • Dasanayake A.P.
        • Norman R.G.
        • Boylan R.J.
        • et al.
        TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects.
        J Neuroimmunol. 2009; 216: 92-97
        • Holmes C.
        • Cunningham C.
        • Zotova E.
        • Woolford J.
        • Dean C.
        • Kerr S.
        • et al.
        Systemic inflammation and disease progression in Alzheimer disease.
        Neurology. 2009; 73: 768-774
        • Holmes C.
        • El-Okl M.
        • Williams A.L.
        • Cunningham C.
        • Wilcockson D.
        • Perry V.H.
        Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer's disease.
        J Neurol Neurosurg Psychiatry. 2003; 74: 788-789
        • Sparks D.L.
        • Scheff S.W.
        • Liu H.
        • Landers T.M.
        • Coyne C.M.
        • Hunsaker 3rd, J.C.
        Increased incidence of neurofibrillary tangles (NFT) in non-demented individuals with hypertension.
        J Neurol Sci. 1995; 131: 162-169
        • Launer L.J.
        • Ross G.W.
        • Petrovitch H.
        • Masaki K.
        • Foley D.
        • White L.R.
        • Havlik R.J.
        Midlife blood pressure and dementia: The Honolulu-Asia aging study.
        Neurobiol Aging. 2000; 21: 49-55
        • Meyer J.S.
        • Rauch G.M.
        • Rauch R.A.
        • Haque A.
        • Crawford K.
        Cardiovascular and other risk factors for Alzheimer's disease and vascular dementia.
        Ann N Y Acad Sci. 2000; 903: 411-423
        • Farrer L.A.
        • Sherbatich T.
        • Keryanov S.A.
        • Korovaitseva G.I.
        • Rogaeva E.A.
        • Petruk S.
        • et al.
        Association between angiotensin-converting enzyme and Alzheimer disease.
        Arch Neurol. 2000; 57: 210-214
        • Brayne C.
        • Gill C.
        • Huppert F.A.
        • Barkley C.
        • Gehlhaar E.
        • Girling D.M.
        • et al.
        Vascular risks and incident dementia: Results from a cohort study of the very old.
        Dement Geriatr Cogn Disord. 1998; 9: 175-180
        • Mielke M.M.
        • Rosenberg P.B.
        • Tschanz J.
        • Cook L.
        • Corcoran C.
        • Hayden K.M.
        • et al.
        Vascular factors predict rate of progression in Alzheimer disease.
        Neurology. 2007; 69: 1850-1858
        • Beeri M.S.
        • Rapp M.
        • Silverman J.M.
        • Schmeidler J.
        • Grossman H.T.
        • Fallon J.T.
        • et al.
        Coronary artery disease is associated with Alzheimer disease neuropathology in APOE4 carriers.
        Neurology. 2006; 66: 1399-1404
        • Hulette C.M.
        • Welsh-Bohmer K.
        Coronary artery disease is associated with Alzheimer disease neuropathology in APOE4 carriers.
        Neurology. 2007; 68: 471
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Ikeda U.
        • Ito T.
        • Shimada K.
        Interleukin-6 and acute coronary syndrome.
        Clin Cardiol. 2001; 24: 701-704
        • McCarty M.F.
        Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: Down-regulation with essential fatty acids, ethanol and pentoxifylline.
        Med Hypotheses. 1999; 52: 465-477
        • Yudkin J.S.
        • Kumari M.
        • Humphries S.E.
        • Mohamed-Ali V.
        Inflammation, obesity, stress and coronary heart disease: Is interleukin-6 the link?.
        Atherosclerosis. 2000; 148: 209-214
        • Bossowska A.
        • Kiersnowska-Rogowska B.
        • Bossowski A.
        • Galar B.
        • Sowinski P.
        Cytokines in patients with ischaemic heart disease or myocardial infarction.
        Kardiol Pol. 2003; 59: 105-114
        • Luc G.
        • Bard J.M.
        • Juhan-Vague I.
        • Ferrieres J.
        • Evans A.
        • Amouyel P.
        • et al.
        C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease: The PRIME Study.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1255-1261
        • Li Q.X.
        • Fu Q.Q.
        • Shi S.W.
        • Wang Y.F.
        • Xie J.J.
        • Yu X.
        • et al.
        Relationship between plasma inflammatory markers and plaque fibrous cap thickness determined by intravascular optical coherence tomography.
        Heart. 2009; 96: 196-201
        • Furtado M.V.
        • Rossini A.P.
        • Campani R.B.
        • Meotti C.
        • Segatto M.
        • Vietta G.
        • Polanczyk C.A.
        Interleukin-18: An independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up.
        Coron Artery Dis. 2009; 20: 327-331
        • Ozturk C.
        • Ozge A.
        • Yalin O.O.
        • Yilmaz I.A.
        • Delialioglu N.
        • Yildiz C.
        • et al.
        The diagnostic role of serum inflammatory and soluble proteins on dementia subtypes: Correlation with cognitive and functional decline.
        Behav Neurol. 2007; 18: 207-215
        • Bossu P.
        • Salani F.
        • Cacciari C.
        • Picchetto L.
        • Cao M.
        • Bizzoni F.
        • et al.
        Disease outcome, alexithymia and depression are differently associated with serum IL-18 levels in acute stroke.
        Curr Neurovasc Res. 2009; 6: 163-170
        • Yuen C.M.
        • Chiu C.A.
        • Chang L.T.
        • Liou C.W.
        • Lu C.H.
        • Youssef A.A.
        • Yip H.K.
        Level and value of interleukin-18 after acute ischemic stroke.
        Circ J. 2007; 71: 1691-1696
        • Jellinger K.A.
        • Mitter-Ferstl E.
        The impact of cerebrovascular lesions in Alzheimer disease—a comparative autopsy study.
        J Neurol. 2003; 250: 1050-1055
        • Engelhart M.J.
        • Geerlings M.I.
        • Meijer J.
        • Kiliaan A.
        • Ruitenberg A.
        • van Swieten J.C.
        • et al.
        Inflammatory proteins in plasma and the risk of dementia: The Rotterdam study.
        Arch Neurol. 2004; 61: 668-672
        • Tracey K.J.
        The inflammatory reflex.
        Nature. 2002; 420: 853-859
        • Pavlov V.A.
        • Parrish W.R.
        • Rosas-Ballina M.
        • Ochani M.
        • Puerta M.
        • Ochani K.
        • et al.
        Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway.
        Brain Behav Immun. 2009; 23: 41-45
        • Hofer S.
        • Eisenbach C.
        • Lukic I.K.
        • Schneider L.
        • Bode K.
        • Brueckmann M.
        • et al.
        Pharmacologic cholinesterase inhibition improves survival in experimental sepsis.
        Crit Care Med. 2008; 36: 404-408
        • Gambi F.
        • Reale M.
        • Iarlori C.
        • Salone A.
        • Toma L.
        • Paladini C.
        • et al.
        Alzheimer patients treated with an AchE inhibitor show higher IL-4 and lower IL-1beta levels and expression in peripheral blood mononuclear cells.
        J Clin Psychopharmacol. 2004; 24: 314-321
        • Noble J.E.
        • Wang L.
        • Cerasoli E.
        • Knight A.E.
        • Porter R.A.
        • Gray E.
        • et al.
        An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA.
        Clin Chem Lab Med. 2008; 46: 1033-1045
        • Lee K.S.
        • Chung J.H.
        • Choi T.K.
        • Suh S.Y.
        • Oh B.H.
        • Hong C.H.
        Peripheral cytokines and chemokines in Alzheimer's disease.
        Dement Geriatr Cogn Disord. 2009; 28: 281-287
        • Mattsson N.
        • Zetterberg H.
        • Hansson O.
        • Andreasen N.
        • Parnetti L.
        • Jonsson M.
        • et al.
        CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.
        JAMA. 2009; 302: 385-393
        • Verreault R.
        • Laurin D.
        • Lindsay J.
        • De Serres G.
        Past exposure to vaccines and subsequent risk of Alzheimer's disease.
        CMAJ. 2001; 165: 1495-1498
        • Koronyo-Hamaoui M.
        • Ko M.K.
        • Koronyo Y.
        • Azoulay D.
        • Seksenyan A.
        • Kunis G.
        • et al.
        Attenuation of ad-like neuropathology by harnessing peripheral immune cells: Local elevation of IL-10 and MMP-9.
        J Neurochem. 2009; 111: 1409-1424
        • Relkin N.R.
        • Szabo P.
        • Adamiak B.
        • Burgut T.
        • Monthe C.
        • Lent R.W.
        • et al.
        18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease.
        Neurobiol Aging. 2009; 30: 1728-1736
        • Town T.
        • Vendrame M.
        • Patel A.
        • Poetter D.
        • DelleDonne A.
        • Mori T.
        • et al.
        Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer's beta-amyloid(1–42).
        J Neuroimmunol. 2002; 132: 49-59
        • Shie F.S.
        • Nivison M.
        • Hsu P.C.
        • Montine T.J.
        Modulation of microglial innate immunity in Alzheimer's disease by activation of peroxisome proliferator-activated receptor gamma.
        Curr Med Chem. 2009; 16: 643-651
        • Sato T.
        • Hanyu H.
        • Hirao K.
        • Kanetaka H.
        • Sakurai H.
        • Iwamoto T.
        Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease.
        Neurobiol Aging. 2009; ([published online ahead of print November 16])
        • Li G.
        • Larson E.B.
        • Sonnen J.A.
        • Shofer J.B.
        • Petrie E.C.
        • Schantz A.
        • et al.
        Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease.
        Neurology. 2007; 69: 878-885
        • Cordle A.
        • Landreth G.
        3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses.
        J Neurosci. 2005; 25: 299-307
        • Rosenberg P.B.
        • Mielke M.M.
        • Tschanz J.
        • Cook L.
        • Corcoran C.
        • Hayden K.M.
        • et al.
        Effects of cardiovascular medications on rate of functional decline in Alzheimer disease.
        Am J Geriatr Psychiatry. 2008; 16: 883-892
        • Madej A.
        • Buldak L.
        • Basiak M.
        • Szkrobka W.
        • Dulawa A.
        • Okopien B.
        The effects of 1 month antihypertensive treatment with perindopril, bisoprolol or both on the ex vivo ability of monocytes to secrete inflammatory cytokines.
        Int J Clin Pharmacol Ther. 2009; 47: 686-694
        • Burns J.M.
        • Cronk B.B.
        • Anderson H.S.
        • Donnelly J.E.
        • Thomas G.P.
        • Harsha A.
        • et al.
        Cardiorespiratory fitness and brain atrophy in early Alzheimer disease.
        Neurology. 2008; 71: 210-216
        • Swardfager W.
        • Herrmann N.
        • Dowlati Y.
        • Oh P.I.
        • Kiss A.
        • Walker S.E.
        • Lanctôt K.L.
        Indoleamine 2,3-dioxygenase activation and depressive symptoms in patients with coronary artery disease.
        Psychoneuroendocrinology. 2009; 34: 1560-1566
        • Oliver J.C.
        • Bland L.A.
        • Oettinger C.W.
        • Arduino M.J.
        • McAllister S.K.
        • Aguero S.M.
        • Favero M.S.
        Cytokine kinetics in an in vitro whole blood model following an endotoxin challenge.
        Lymphokine Cytokine Res. 1993; 12: 115-120