Advertisement

Peroxisome Proliferator-Activated Receptors-Alpha Modulate Dopamine Cell Activity Through Nicotinic Receptors

      Background

      Modulation of midbrain dopamine neurons by nicotinic acetylcholine receptors (nAChRs) plays an important role in behavior, cognition, motivation, and reward. Specifically, nAChRs containing β2 subunits (β2-nAChRs) switch dopamine cells from a resting to an excited state. However, how β2-nAChRs can be modulated and thereby how dopamine firing activity is affected remains elusive. Because changes in dopamine cell activity are reflected in the dynamics of microcircuits generating altered responses to stimuli and inputs, factors regulating their state are fundamental. Among these, endogenous ligands to the nuclear receptor-transcription factor peroxisome proliferator-activated receptors type-alpha (PPARα) have been recently found to suppress nicotine-induced responses of dopamine neurons.

      Methods

      We used both in vitro and in vivo electrophysiological techniques together with behavioral analysis to investigate on the effects of modulation of PPARα in Sprague–Dawley rat and C57BLJ/6 mouse dopamine neurons and their interactions with β2-nAChRs. To this aim, we took advantage of a selective reexpression of β2-nAChR exclusively in dopamine cells by stereotaxically injecting a lentiviral vector in the mouse ventral tegmental area.

      Results

      We found that activation of PPARα decreases in vitro both dopamine cell activity and ventral tegmental area net output through negative modulation of β2-nAChRs. Additionally, PPARα activation in vivo reduces both the number of spontaneously active dopamine neurons and nicotine-induced increased locomotion.

      Conclusions

      Our combined findings suggest PPARα ligands as important negative modulators of β2-nAChRs on dopamine neurons. Thus, PPARα ligands might prove beneficial in treating disorders in which dopamine dysfunction plays a prominent role, such as schizophrenia and nicotine addiction.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rebec G.V.
        • Grabner C.P.
        • Johnson M.
        • Pierce R.C.
        • Bardo M.T.
        Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty.
        Neuroscience. 1997; 76: 707-714
        • Schultz W.
        Behavioral dopamine signals.
        Trends Neurosci. 2007; 30: 203-210
        • Schultz W.
        The phasic reward signal of primate dopamine neurons.
        Adv Pharmacol. 1998; 42: 686-690
        • Fields H.L.
        • Hjelmstad G.O.
        • Margolis E.B.
        • Nicola S.M.
        Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement.
        Annu Rev Neurosci. 2007; 30: 289-316
        • Geisler S.
        • Wise R.A.
        Functional implications of glutamatergic projections to the ventral tegmental area.
        Rev Neurosci. 2008; 19: 227-244
        • Kitai S.T.
        • Shepard P.D.
        • Callaway J.C.
        • Scroggs R.
        Afferent modulation of dopamine neuron firing patterns.
        Curr Opin Neurobiol. 1999; 9: 690-697
        • Maskos U.
        The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: Relevance to drugs of abuse and pathology.
        Br J Pharmacol. 2008; 153: S438-S445
        • Geisler S.
        • Derst C.
        • Veh R.W.
        • Zahm D.S.
        Glutamatergic afferents of the ventral tegmental area in the rat.
        J Neurosci. 2007; 27: 5730-5743
        • Lodge D.J.
        • Grace A.A.
        The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons.
        Proc Natl Acad Sci U S A. 2006; 103: 5167-5172
        • Oakman S.A.
        • Faris P.L.
        • Kerr P.E.
        • Cozzari C.
        • Hartman B.K.
        Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area.
        J Neurosci. 1995; 15: 5859-5869
        • Clarke P.B.
        • Schwartz R.D.
        • Paul S.M.
        • Pert C.B.
        • Pert A.
        Nicotinic binding in rat brain: Autoradiographic comparison of [3H] acetylcholine, [3H] nicotine, and [125I]-alpha-bungarotoxin.
        J Neurosci. 1985; 5: 1307-1315
        • Mash D.C.
        • Potter L.T.
        Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain.
        Neuroscience. 1986; 19: 551-564
        • Mereu G.
        • Yoon K.W.
        • Boi V.
        • Gessa G.L.
        • Naes L.
        • Westfall T.C.
        Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine.
        Eur J Pharmacol. 1987; 141: 395-399
        • Pidoplichko V.I.
        • deBiasi M.
        • Williams J.T.
        • Dani J.A.
        Nicotine activates and desensitizes midbrain dopamine neurons.
        Nature. 1997; 390: 401-404
        • Mameli-Engvall M.
        • Evrard A.
        • Pons S.
        • Maskos U.
        • Svensson T.H.
        • Changeux J.P.
        • Faure P.
        Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors.
        Neuron. 2006; 50: 911-921
        • McClernon F.J.
        • Kollins S.H.
        ADHD and smoking: From genes to brain to behavior.
        Ann NY Acad Sci. 2008; 1141: 131-147
        • Avena N.M.
        Examining the addictive-like properties of binge eating using an animal model of sugar dependence.
        Exp Clin Psychopharmacol. 2007; 15: 481-491
        • Sarter M.
        • Bruno J.P.
        • Parikh V.
        • Martinez V.
        • Kozak R.
        • Richards J.B.
        Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia.
        EXS. 2006; 98: 65-86
        • Garcia-Rill E.
        • Biedermann J.A.
        • Chambers T.
        • Skinner R.D.
        • Mrak R.E.
        • Husain M.
        • Karson C.N.
        Mesopontine neurons in schizophrenia.
        Neuroscience. 1995; 66: 321-335
        • Melis M.
        • Pillolla G.
        • Luchicchi A.
        • Muntoni A.L.
        • Yasar S.
        • Goldberg S.R.
        • Pistis M.
        Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.
        J Neurosci. 2008; 28: 13985-13994
        • Zhu Y.
        • Kan L.
        • Qi C.
        • Kanwar Y.S.
        • Yeldandi A.V.
        • Rao M.S.
        • Reddy J.K.
        Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR.
        J Biol Chem. 2000; 275: 13510-13516
        • Melis M.
        • Pillolla G.
        • Bisogno T.
        • Minassi A.
        • Petrosino S.
        • Perra S.
        • et al.
        Protective activation of the endocannabinoid system during ischemia in dopamine neurons.
        Neurobiol Dis. 2006; 24: 15-27
        • Nugent F.S.
        • Hwong A.R.
        • Udaka Y.
        • Kauer J.A.
        High-frequency afferent stimulation induces long-term potentiation of field potentials in the ventral tegmental area.
        Neuropsychopharmacology. 2008; 33: 1704-1712
        • Melis M.
        • Pillolla G.
        • Perra S.
        • Colombo G.
        • Muntoni A.L.
        • Pistis M.
        Electrophysiological properties of dopamine neurons in the ventral tegmental area of Sardinian alcohol-preferring rats.
        Psychopharmacology. 2009; 201: 471-481
        • Tolu S.
        • Avale M.E.
        • Nakatani H.
        • Pons S.
        • Parnaudeau S.
        • Tronche F.
        • et al.
        A versatile system for the neuronal subtype specific expression of lentiviral vectors.
        FASEB J. 2009; 24 (, Nos. 3): 723-730
        • Maskos U.
        • Molles B.E.
        • Pons S.
        • Besson M.
        • Guiard B.P.
        • Guilloux J.P.
        • et al.
        Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors.
        Nature. 2005; 436: 103-107
        • Turiault M.
        • Parnaudeau S.
        • Milet A.
        • Parlato R.
        • Rouzeau J.D.
        • Lazar M.
        • Tronche F.
        Analysis of dopamine transporter gene expression pattern—generation of DAT-iCre transgenic mice.
        FEBS J. 2007; 274: 3568-3577
        • Fattore L.
        • Melis M.
        • Diana M.
        • Fratta W.
        • Gessa G.
        The cyclo-oxygenase inhibitor nimesulide induces conditioned place preference in rats.
        Eur J Pharmacol. 2000; 406: 75-77
        • Margolis E.B.
        • Mitchell J.M.
        • Ishikawa J.
        • Hjelmstad G.O.
        • Fields H.L.
        Midbrain dopamine neurons: Projection target determines action potential duration and dopamine D(2) receptor inhibition.
        J Neurosci. 2008; 28: 8908-8913
        • Matsubayashi H.
        • Amano T.
        • Seki T.
        • Sasa M.
        • Sakai N.
        Electrophysiological characterization of nicotine-induced excitation of dopaminergic neurons in the rat substantia nigra.
        J Pharmacol Sci. 2003; 93: 143-148
        • Charpantier E.
        • Wiesner A.
        • Huh K.H.
        • Ogier R.
        • Hoda J.C.
        • Allaman G.
        • et al.
        Alpha7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases.
        J Neurosci. 2005; 25: 9836-9849
        • Huang J.
        • Huang A.
        • Zhang Q.
        • Lin Y.C.
        • Yu H.G.
        Novel mechanism for suppression of hyperpolarization-activated cyclic nucleotide-gated pacemaker channels by receptor-like tyrosine phosphatase-alpha.
        J Biol Chem. 2008; 283: 29912-29919
        • Teissier E.
        • Nohara A.
        • Chinetti G.
        • Paumelle R.
        • Cariou B.
        • Fruchart J.C.
        • et al.
        Peroxisome proliferator-activated receptor alpha induces NADPH oxidase activity in macrophages, leading to the generation of LDL with PPAR-alpha activation properties.
        Circ Res. 2004; 95: 1174-1182
        • Avshalumov M.V.
        • Chen B.T.
        • Koos T.
        • Tepper J.M.
        • Rice M.E.
        Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels.
        J Neurosci. 2005; 25: 4222-4231
        • Wu Y.N.
        • Martella G.
        • Johnson S.W.
        Rotenone enhances N-methyl-D-aspartate currents by activating a tyrosine kinase in rat dopamine neurons.
        Neuroreport. 2007; 18: 1813-1816
        • Zheng Y.
        • Sudou K.
        • Nawa H.
        • Namba H.
        Field potential recording in the ventral tegmental area: Pharmacological and toxicological evaluations of postsynaptic dopaminergic neuron activity.
        Neurosci Res. 2006; 55: 426-433
        • Mineur Y.S.
        • Brunzell D.H.
        • Grady S.R.
        • Lindstrom J.M.
        • McIntosh J.M.
        • Marks M.J.
        • et al.
        Localized low-level re-expression of high-affinity mesolimbic nicotinic acetylcholine receptors restores nicotine-induced locomotion but not place conditioning.
        Genes Brain Behav. 2009; 8: 257-266
        • King S.L.
        • Caldarone B.J.
        • Picciotto M.R.
        Beta2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration.
        Neuropharmacology. 2004; 47: 132-139
        • Wiesner A.
        • Fuhrer C.
        Regulation of nicotinic acetylcholine receptors by tyrosine kinases in the peripheral and central nervous system: Same players, different roles.
        Cell Mol Life Sci. 2006; 63: 2818-2828
        • Cullingford T.E.
        • Bhakoo K.
        • Peuchen S.
        • Dolphin C.T.
        • Patel R.
        • Clark J.B.
        Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system.
        J Neurochem. 1998; 70: 1366-1375
        • Kainu T.
        • Wikstrom A.C.
        • Gustafsson J.A.
        • Pelto-Huikko M.
        Localization of the peroxisome proliferator-activated receptor in the brain.
        Neuroreport. 1994; 5: 2481-2485
        • Galan-Rodriguez B.
        • Suarez J.
        • Gonzalez-Aparicio R.
        • Bermudez-Silva F.J.
        • Maldonado R.
        • Robledo P.
        • et al.
        Oleoylethanolamide exerts partial and dose-dependent neuroprotection of substantia nigra dopamine neurons.
        Neuropharmacology. 2009; 56: 653-664
        • Ropero A.B.
        • Juan-Pico P.
        • Rafacho A.
        • Fuentes E.
        • Bermudez-Silva F.J.
        • Roche E.
        • et al.
        Rapid non-genomic regulation of Ca2+ signals and insulin secretion by PPAR alpha ligands in mouse pancreatic islets of Langerhans.
        J Endocrinol. 2009; 200: 127-138
        • Gardner O.S.
        • Dewar B.J.
        • Graves L.M.
        Activation of mitogen-activated protein kinases by peroxisome proliferator-activated receptor ligands: An example of nongenomic signaling.
        Mol Pharmacol. 2005; 68: 933-941
        • Fu J.
        • Gaetani S.
        • Oveisi F.
        • Lo Verme J.
        • Serrano A.
        • Rodriguez De Fonseca F.
        • et al.
        Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha.
        Nature. 2003; 425: 90-93
        • Di Marzo V.
        • Fontana A.
        • Cadas H.
        • Schinelli S.
        • Cimino G.
        • Schwartz J.C.
        • Piomelli D.
        Formation and inactivation of endogenous cannabinoid anandamide in central neurons.
        Nature. 1994; 372: 686-691
        • Hansen H.S.
        • Lauritzen L.
        • Strand A.M.
        • Vinggaard A.M.
        • Frandsen A.
        • Schousboe A.
        Characterization of glutamate-induced formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons.
        J Neurochem. 1997; 69: 753-761
        • Cravatt B.F.
        • Giang D.K.
        • Mayfield S.P.
        • Boger D.L.
        • Lerner R.A.
        • Gilula N.B.
        Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.
        Nature. 1996; 384: 83-87
        • Artmann A.
        • Petersen G.
        • Hellgren L.I.
        • Boberg J.
        • Skonberg C.
        • Nellemann C.
        • et al.
        Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine.
        Biochim Biophys Acta. 2008; 1781: 200-212
        • Hansen S.L.
        • Nielsen A.H.
        • Knudsen K.E.
        • Artmann A.
        • Petersen G.
        • Kristiansen U.
        • et al.
        Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus.
        Neurochem Int. 2009; 54: 199-204
        • Cullingford T.
        Peroxisome proliferator-activated receptor alpha and the ketogenic diet.
        Epilepsia. 2008; 49: 70-72
        • Bough K.J.
        • Schwartzkroin P.A.
        • Rho J.M.
        Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo.
        Epilepsia. 2003; 44: 752-760
        • Porta N.
        • Vallee L.
        • Lecointe C.
        • Bouchaert E.
        • Staels B.
        • Bordet R.
        • Auvin S.
        Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, exerts anticonvulsive properties.
        Epilepsia. 2009; 50: 943-948
        • Terry Jr., A.V.
        Role of the central cholinergic system in the therapeutics of schizophrenia.
        Curr Neuropharmacol. 2008; 6: 286-292
        • Rahman S.
        • Lopez-Hernandez G.Y.
        • Corrigall W.A.
        • Papke R.L.
        Neuronal nicotinic receptors as brain targets for pharmacotherapy of drug addiction.
        CNS Neurol Disord Drug Targets. 2008; 7: 422-441