Advertisement
Archival Report| Volume 67, ISSUE 11, P1057-1066, June 01, 2010

Short- and Long-Term Functional Consequences of Fluoxetine Exposure During Adolescence in Male Rats

Published:February 22, 2010DOI:https://doi.org/10.1016/j.biopsych.2009.12.033

      Background

      Fluoxetine (FLX), a selective serotonin reuptake inhibitor, is prescribed for the treatment of major depressive disorder in young populations. Here, we explore the short- and long-term consequences of adolescent exposure to FLX on behavioral reactivity to emotion-eliciting stimuli.

      Methods

      Adolescent male rats received FLX (10 mg/kg) twice daily for 15 consecutive days (postnatal days 35–49). The influence of FLX on behavioral reactivity to rewarding and aversive stimuli was assessed 24 hours (short-term) or 3 weeks after FLX treatment (long-term). A separate group of adult rats was also treated with FLX (postnatal days 65–79) and responsiveness to forced swimming was assessed at identical time intervals as with the adolescents.

      Results

      Fluoxetine exposure during adolescence resulted in long-lasting decreases in behavioral reactivity to forced swimming stress and enhanced sensitivity to sucrose and to anxiety-eliciting situations in adulthood. The FLX-induced anxiety-like behavior was alleviated by re-exposure to FLX in adulthood. Fluoxetine treatment during adolescence also impaired sexual copulatory behaviors in adulthood. Fluoxetine-treated adult rats did not show changes in behavioral reactivity to forced swim stress as observed in those treated during adolescence and tested in adulthood.

      Conclusions

      Treating adolescent rats with FLX results in long-lived complex outputs regulated by the emotional valence of the stimulus, the environment in which it is experienced, and the brain circuitry likely being engaged by it. Our findings highlight the need for further research to improve our understanding of the alterations that psychotropic exposure may induce on the developing nervous system and the potential enduring effects resulting from such treatments.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kapornai K.
        • Vetro A.
        Depression in children.
        Curr Opin Psychiatry. 2008; 21: 1-7
        • Birmaher B.
        • Ryan N.D.
        • Williamson D.E.
        • Brent D.A.
        • Kaufman J.
        • Dahl R.E.
        • et al.
        Childhood and adolescent depression: A review of the past 10 years.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 1427-1439
        • Weissman M.M.
        • Wolk S.
        • Goldstein R.B.
        • Moreau D.
        • Adams P.
        • Greenwald S.
        • et al.
        Depressed adolescents grown up.
        JAMA. 1999; 281: 1707-1713
        • Pfeffer C.R.
        Diagnosis of childhood and adolescent suicidal behavior: Unmet needs for suicide prevention.
        Biol Psychiatry. 2001; 49: 1055-1061
        • Rihmer Z.
        Suicide risk in mood disorders.
        Curr Opin Psychiatry. 2007; 20: 17-22
        • Kovacs M.
        Presentation and course of major depressive disorder during childhood and later years of the life span.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 705-715
        • Patten C.A.
        • Choi W.S.
        • Vickers K.S.
        • Pierce J.P.
        Persistence of depressive symptoms in adolescents.
        Neuropsychopharmacology. 2001; 25: S89-S91
        • Harrison P.J.
        The neuropathology of primary mood disorder.
        Brain. 2002; 125: 1428-1449
        • Rohde P.
        • Lewinsohn P.M.
        • Seeley J.R.
        Are adolescents changed by an episode of major depression?.
        J Am Acad Child Adolesc Psychiatry. 1994; 33: 1289-1298
        • Andersen S.L.
        • Teicher M.H.
        Stress, sensitive periods and maturational events in adolescent depression.
        Trends Neurosci. 2008; 31: 183-191
        • Safer D.J.
        Should selective serotonin reuptake inhibitors be prescribed for children with major depressive and anxiety disorders?.
        Pediatrics. 2006; 118: 1248-1251
        • Vaswani M.
        • Linda F.K.
        • Ramesh S.
        Role of selective serotonin reuptake inhibitors in psychiatric disorders: A comprehensive review.
        Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 85-102
        • Pliszka S.R.
        The use of psychostimulants in the pediatric patient.
        Pediatr Clin North Am. 1998; 45: 1085-1098
        • Emslie G.J.
        • Mayes T.L.
        • Hughes C.W.
        Depression: Recent developments and innovative treatments.
        Psychiatr Clin North Am. 2000; 23: 813-835
        • Emslie G.J.
        • Mayes T.L.
        Mood disorders in children and adolescents: Psychopharmacological treatment.
        Biol Psychiatry. 2001; 49: 1082-1090
        • Coyle J.T.
        • Pine D.S.
        • Charney D.S.
        • Lewis L.
        • Nemeroff C.B.
        • Carlson G.A.
        • et al.
        Depression and bipolar support alliance consensus statement on the unmet needs in diagnosis and treatment of mood disorders in children and adolescents.
        J Am Acad Child Adolesc Psychiatry. 2003; 42: 1494-1503
        • Zito J.M.
        • Safer D.J.
        • DosReis S.
        • Gardner J.F.
        • Soeken K.
        • Boles M.
        • et al.
        Rising prevalence of antidepressants among US youths.
        Pediatrics. 2002; 109: 721-727
        • Birmaher B.
        Should we use antidepressant medications for children and adolescents with depressive disorders?.
        Psychopharmacol Bull. 1998; 34: 35-39
        • Kratochvil C.J.
        • Vitiello B.
        • Walkup J.
        • Emslie G.
        • Waslick B.D.
        • Weller E.B.
        • et al.
        Selective serotonin reuptake inhibitors in pediatric depression: Is the balance between benefits and risks favorable?.
        J Child Adolesc Psychopharmacol. 2006; 16: 11-24
        • Coyle J.T.
        Psychotropic drug use in very young children.
        JAMA. 2000; 283: 1059-1060
        • Zito J.M.
        • Tobi H.
        • de Jong-van den Berg L.T.
        • Fegert J.M.
        • Safer D.J.
        • Janhsen K.
        • et al.
        Antidepressant prevalence for youths: A multi-national comparison.
        Pharmacoepidemiol Drug Saf. 2006; 15: 793-798
        • de Montigny C.
        • Blier P.
        Effects of antidepressant treatments on 5-HT neurotransmission: Electrophysiological and clinical studies.
        Adv Biochem Psychopharmacol. 1984; 39: 223-239
        • Nestler E.J.
        • Barrot M.
        • DiLeone R.J.
        • Eisch A.J.
        • Gold S.J.
        • Monteggia L.M.
        Neurobiology of depression.
        Neuron. 2002; 34: 13-25
        • Blakemore S.J.
        • Choudhury S.
        Brain development during puberty: State of the science.
        Dev Sci. 2006; 9: 11-14
        • Azmitia E.C.
        Serotonin and brain: Evolution, neuroplasticity, and homeostasis.
        Int Rev Neurobiol. 2007; 77: 31-56
        • Whitaker-Azmitia P.M.
        Behavioral and cellular consequences of increasing serotonergic activity during brain development: A role in autism?.
        Int J Dev Neurosci. 2005; 23: 75-83
        • Borue X.
        • Chen J.
        • Condron B.G.
        Developmental effects of SSRIs: Lessons learned from animal studies.
        Int J Dev Neurosci. 2007; 25: 341-347
        • Molliver M.E.
        Serotonergic neuronal systems: What their anatomic organization tells us about function.
        J Clin Psychopharmacol. 1987; 7: 3S-23S
        • Ansorge M.S.
        • Zhou M.
        • Lira A.
        • Hen R.
        • Gingrich J.A.
        Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice.
        Science. 2004; 306: 879-881
        • Cools R.
        • Roberts A.C.
        • Robbins T.W.
        Serotoninergic regulation of emotional and behavioural control processes.
        Trends Cogn Sci. 2008; 12: 31-40
        • Harmer C.J.
        • Bhagwagar Z.
        • Perrett D.I.
        • Vollm B.A.
        • Cowen P.J.
        • Goodwin G.M.
        Acute SSRI administration affects the processing of social cues in healthy volunteers.
        Neuropsychopharmacology. 2003; 28: 148-152
        • Ansorge M.S.
        • Morelli E.
        • Gingrich J.A.
        Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice.
        J Neurosci. 2008; 28: 199-207
        • Spear L.P.
        The adolescent brain and age-related behavioral manifestations.
        Neurosci Biobehav Rev. 2000; 24: 417-463
        • Seeman P.
        • Bzowej N.H.
        • Guan H.C.
        • Bergeron C.
        • Becker L.E.
        • Reynolds G.P.
        • et al.
        Human brain dopamine receptors in children and aging adults.
        Synapse. 1987; 1: 399-404
        • Andersen S.L.
        • Navalta C.P.
        Altering the course of neurodevelopment: A framework for understanding the enduring effects of psychotropic drugs.
        Int J Dev Neurosci. 2004; 22: 423-440
        • Bhagwagar Z.
        • Cowen P.J.
        “It's not over when it's over”: Persistent neurobiological abnormalities in recovered depressed patients.
        Psychol Med. 2008; 38: 307-313
        • Duval F.
        • Lebowitz B.D.
        • Macher J.P.
        Treatments in depression.
        Dialogues Clin Neurosci. 2006; 8: 191-206
        • Spear L.P.
        • Brake S.C.
        Periadolescence: Age-dependent behavior and psychopharmacological responsivity in rats.
        Dev Psychobiol. 1983; 16: 83-109
        • Cryan J.F.
        • Markou A.
        • Lucki I.
        Assessing antidepressant activity in rodents: Recent developments and future needs.
        Trends Pharmacol Sci. 2002; 23: 238-245
        • Porsolt R.D.
        Animal models of depression: Utility for transgenic research.
        Rev Neurosci. 2000; 11: 53-58
        • Wegerer V.
        • Moll G.H.
        • Bagli M.
        • Rothenberger A.
        • Ruther E.
        • Huether G.
        Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life.
        J Child Adolesc Psychopharmacol. 1999; 9 (discussion 25–26): 13-24
        • Bolaños C.A.
        • Barrot M.
        • Berton O.
        • Wallace-Black D.
        • Nestler E.J.
        Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood.
        Biol Psychiatry. 2003; 54: 1317-1329
        • Bevins R.A.
        • Besheer J.
        Novelty reward as a measure of anhedonia.
        Neurosci Biobehav Rev. 2005; 29: 707-714
        • Friedman A.
        • Frankel M.
        • Flaumenhaft Y.
        • Merenlender A.
        • Pinhasov A.
        • Feder Y.
        • et al.
        Programmed acute electrical stimulation of ventral tegmental area alleviates depressive-like behavior.
        Neuropsychopharmacology. 2009; 34: 1057-1066
        • Iñiguez S.D.
        • Warren B.L.
        • Parise E.M.
        • Alcantara L.F.
        • Schuh B.
        • Maffeo M.L.
        • et al.
        Nicotine exposure during adolescence induces a depression-like state in adulthood.
        Neuropsychopharmacology. 2009; 34: 1609-1624
        • Wallace D.L.
        • Han M.H.
        • Graham D.L.
        • Green T.A.
        • Vialou V.
        • Iniguez S.D.
        • et al.
        CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits.
        Nat Neurosci. 2009; 12: 200-209
        • Nestler E.J.
        • Carlezon Jr, W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Yadid G.
        • Friedman A.
        Dynamics of the dopaminergic system as a key component to the understanding of depression.
        Prog Brain Res. 2008; 172: 265-286
        • Naranjo C.A.
        • Tremblay L.K.
        • Busto U.E.
        The role of the brain reward system in depression.
        Prog Neuropsychopharmacol Biol Psychiatry. 2001; 25: 781-823
        • Feder A.
        • Nestler E.J.
        • Charney D.S.
        Psychobiology and molecular genetics of resilience.
        Nat Rev Neurosci. 2009; 10: 446-457
        • aan het Rot M.
        • Mathew S.J.
        • Charney D.S.
        Neurobiological mechanisms in major depressive disorder.
        CMAJ. 2009; 180: 305-313
        • Kelley A.E.
        • Berridge K.C.
        The neuroscience of natural rewards: Relevance to addictive drugs.
        J Neurosci. 2002; 22: 3306-3311
        • Simansky K.
        • Eberle-Wang K.
        Serotonergic mechanisms and ingestion: Pharmacological facts and physiological promises.
        Appetite. 1993; 21: 220
        • Halford J.C.
        • Harrold J.A.
        • Lawton C.L.
        • Blundell J.E.
        Serotonin (5-HT) drugs: Effects on appetite expression and use for the treatment of obesity.
        Curr Drug Targets. 2005; 6: 201-213
        • Halford J.C.
        • Blundell J.E.
        Pharmacology of appetite suppression.
        Prog Drug Res. 2000; 54: 25-58
        • Popa D.
        • Lena C.
        • Alexandre C.
        • Adrien J.
        Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: Evidence from sleep, stress, and behavior.
        J Neurosci. 2008; 28: 3546-3554
        • Asin K.E.
        • Davis J.D.
        • Bednarz L.
        Differential effects of serotonergic and catecholaminergic drugs on ingestive behavior.
        Psychopharmacology (Berl). 1992; 109: 415-421
        • Besheer J.
        • Bevins R.A.
        The role of environmental familiarization in novel-object preference.
        Behav Processes. 2000; 50: 19-29
        • Hughes R.N.
        Neotic preferences in laboratory rodents: Issues, assessment and substrates.
        Neurosci Biobehav Rev. 2007; 31: 441-464
      1. Doremus-Fitzwater TL, Varlinskaya EI, Spear LP (2009): Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors [published online ahead of print September 16]. Brain Cogn.

        • Hajnal A.
        • Norgren R.
        Accumbens dopamine mechanisms in sucrose intake.
        Brain Res. 2001; 904: 76-84
        • Wallace D.L.
        • Vialou V.
        • Rios L.
        • Carle-Florence T.L.
        • Chakravarty S.
        • Kumar A.
        • et al.
        The influence of DeltaFosB in the nucleus accumbens on natural reward-related behavior.
        J Neurosci. 2008; 28: 10272-10277
        • Berlyne D.E.
        The arousal and satiation of perceptual curiosity in the rat.
        J Comp Physiol Psychol. 1955; 48: 238-246
        • Klebaur J.E.
        • Bardo M.T.
        The effects of anxiolytic drugs on novelty-induced place preference.
        Behav Brain Res. 1999; 101: 51-57
        • Shimura T.
        • Kamada Y.
        • Yamamoto T.
        Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats.
        Behav Brain Res. 2002; 134: 123-130
        • Wise R.A.
        Role of brain dopamine in food reward and reinforcement.
        Philos Trans R Soc Lond B Biol Sci. 2006; 361: 1149-1158
        • Wise R.A.
        Dopamine and food reward: Back to the elements.
        Am J Physiol Regul Integr Comp Physiol. 2004; 286: R13
        • Lee K.
        • Kornetsky C.
        Acute and chronic fluoxetine treatment decreases the sensitivity of rats to rewarding brain stimulation.
        Pharmacol Biochem Behav. 1998; 60: 539-544
        • Katz R.J.
        • Carroll B.J.
        Intracranial reward after Lilly 110140 (fluoxetine HCl): Evidence for an inhibitory role for serotonin.
        Psychopharmacology (Berl). 1977; 51: 189-193
        • Konkle A.T.
        • Bielajew C.
        Feeding and reward interactions from chronic paroxetine treatment.
        Pharmacol Biochem Behav. 1999; 63: 435-440
        • Redgrave P.
        • Horrell R.I.
        Potentiation of central reward by localised perfusion of acetylcholine and 5-hydroxytryptamine.
        Nature. 1976; 262: 305-307
        • Matthews K.
        • Baldo B.A.
        • Markou A.
        • Lown O.
        • Overstreet D.H.
        • Koob G.F.
        Rewarding electrical brain stimulation: Similar thresholds for Flinders Sensitive Line Hypercholinergic and Flinders Resistant Line Hypocholinergic rats.
        Physiol Behav. 1996; 59: 1155-1162
        • Qi X.
        • Lin W.
        • Li J.
        • Li H.
        • Wang W.
        • Wang D.
        • Sun M.
        Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress.
        Neurobiol Dis. 2008; 31: 278-285
        • Collu M.
        • Poggiu A.S.
        • Serra G.
        Antidepressants sensitize the dopamine mesolimbic system mediating reward.
        Behav Pharamcol. 1996; 7: 18
        • Collu M.
        • Poggiu A.S.
        • Pani L.
        • Serra G.
        Fluoxetine-induced conditioned place preference: A preliminary study.
        Synapse. 1997; 25: 309-311
        • Subhan F.
        • Deslandes P.N.
        • Pache D.M.
        • Sewell R.D.
        Do antidepressants affect motivation in conditioned place preference?.
        Eur J Pharmacol. 2000; 408: 257-263
        • Sekine Y.
        • Suzuki K.
        • Ramachandran P.V.
        • Blackburn T.P.
        • Ashby Jr, C.R.
        Acute and repeated administration of fluoxetine, citalopram, and paroxetine significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study.
        Synapse. 2007; 61: 72-77
        • Serra G.
        • Collu M.
        • D'Aquila P.S.
        • Gessa G.L.
        Role of the mesolimbic dopamine system in the mechanism of action of antidepressants.
        Pharmacol Toxicol. 1992; 71: 72-85
        • Bolaños C.A.
        • Trksak G.H.
        • Cohen O.S.
        • Jackson D.
        Differential serotonergic inhibition of in vitro striatal [3H]acetylcholine release in prenatally cocaine-exposed male and female rats.
        Prog Neuropsychopharmacol Biol Psychiatry. 2002; 26: 1339-1348
        • Bolaños C.A.
        • Trksak G.H.
        • Glatt S.J.
        • Jackson D.
        Prenatal cocaine exposure increases serotonergic inhibition of electrically evoked acetylcholine release from rat striatal slices at adulthood.
        Synapse. 2000; 36: 1-11
        • Deslandes P.N.
        • Pache D.M.
        • Buckland P.
        • Sewell R.D.
        Morphine, cocaine and antidepressant induced motivational activity and midbrain dopaminergic neurotransmission.
        Eur J Pharmacol. 2002; 453: 223-229
        • Nomikos G.G.
        • Damsma G.
        • Wenkstern D.
        • Fibiger H.C.
        Chronic desipramine enhances amphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens.
        Eur J Pharmacol. 1991; 195: 63-73
        • Ohl F.
        Testing for anxiety.
        Clin Neurosci Res. 2003; 3: 233-238
        • Kabbaj M.
        • Devine D.P.
        • Savage V.R.
        • Akil H.
        Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: Differential expression of stress-related molecules.
        J Neurosci. 2000; 20: 6983-6988
        • Belzung C.
        • El Hage W.
        • Moindrot N.
        • Griebel G.
        Behavioral and neurochemical changes following predatory stress in mice.
        Neuropharmacology. 2001; 41: 400-408
        • Hyman S.E.
        Methylphenidate-induced plasticity: What should we be looking for?.
        Biol Psychiatry. 2003; 54: 1310-1311
        • Norcross M.
        • Mathur P.
        • Enoch A.J.
        • Karlsson R.M.
        • Brigman J.L.
        • Cameron H.A.
        • et al.
        Effects of adolescent fluoxetine treatment on fear-, anxiety- or stress-related behaviors in C57BL/6J or BALB/cJ mice.
        Psychopharmacology (Berl). 2008; 200: 413-424
        • Karpova N.N.
        • Lindholm J.
        • Pruunsild P.
        • Timmusk T.
        • Castren E.
        Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice.
        Eur Neuropsychopharmacol. 2009; 19: 97-108
        • den Boer J.A.
        • Westenberg H.G.
        • Kamerbeek W.D.
        • Verhoeven W.M.
        • Kahn R.S.
        Effect of serotonin uptake inhibitors in anxiety disorders; a double-blind comparison of clomipramine and fluvoxamine.
        Int Clin Psychopharmacol. 1987; 2: 21-32
        • Papp L.A.
        • Sinha S.S.
        • Martinez J.M.
        • Coplan J.D.
        • Amchin J.
        • Gorman J.M.
        Low-dose venlafaxine treatment in panic disorder.
        Psychopharmacol Bull. 1998; 34: 207-209
        • Nutt D.J.
        • Glue P.
        • Lawson C.
        The neurochemistry of anxiety: An update.
        Prog Neuropsychopharmacol Biol Psychiatry. 1990; 14: 737-752
        • Bagdy G.
        • Graf M.
        • Anheuer Z.E.
        • Modos E.A.
        • Kantor S.
        Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635.
        Int J Neuropsychopharmacol. 2001; 4: 399-408
        • Belzung C.
        • Le Guisquet A.M.
        • Barreau S.
        • Calatayud F.
        An investigation of the mechanisms responsible for acute fluoxetine-induced anxiogenic-like effects in mice.
        Behav Pharmacol. 2001; 12: 151-162
        • Drapier D.
        • Bentue-Ferrer D.
        • Laviolle B.
        • Millet B.
        • Allain H.
        • Bourin M.
        • et al.
        Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze.
        Behav Brain Res. 2007; 176: 202-209
        • Silva R.C.
        • Brandao M.L.
        Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: An ethological analysis.
        Pharmacol Biochem Behav. 2000; 65: 209-216
        • To C.T.
        • Anheuer Z.E.
        • Bagdy G.
        Effects of acute and chronic fluoxetine treatment of CRH-induced anxiety.
        Neuroreport. 1999; 10: 553-555
        • Bolaños C.A.
        • Willey M.D.
        • Maffeo M.L.
        • Powers K.D.
        • Kinka D.W.
        • Grausam K.B.
        • et al.
        Antidepressant treatment can normalize adult behavioral deficits induced by early-life exposure to methylphenidate.
        Biol Psychiatry. 2008; 63: 309-316
        • Britton D.R.
        • Britton K.T.
        A sensitive open field measure of anxiolytic drug activity.
        Pharmacol Biochem Behav. 1981; 15: 577-582
      2. McCormick CM, Mathews IZ, Thomas C, Waters P (2009): Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models [published online ahead of print July 17]. Brain Cogn.

        • Ramos A.
        • Mellerin Y.
        • Mormede P.
        • Chaouloff F.
        A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses.
        Behav Brain Res. 1998; 96: 195-205
        • Ramos A.
        • Mormede P.
        Stress and emotionality: A multidimensional and genetic approach.
        Neurosci Biobehav Rev. 1998; 22: 33-57
        • Archer J.
        Tests for emotionality in rats and mice: A review.
        Anim Behav. 1973; 21: 205-235
        • Ramos A.
        Animal models of anxiety: Do I need multiple tests?.
        Trends Pharmacol Sci. 2008; 29: 493-498
        • Porsolt R.D.
        • Le Pichon M.
        • Jalfre M.
        Depression: A new animal model sensitive to antidepressant treatments.
        Nature. 1977; 266: 730-732
        • Lucki I.
        The forced swimming test as a model for core and component behavioral effects of antidepressant drugs.
        Behav Pharmacol. 1997; 8: 523-532
        • Hefner K.
        • Holmes A.
        Ontogeny of fear-, anxiety- and depression-related behavior across adolescence in C57BL/6J mice.
        Behav Brain Res. 2007; 176: 210-215
        • Oh J.E.
        • Zupan B.
        • Gross S.
        • Toth M.
        Paradoxical anxiogenic response of juvenile mice to fluoxetine.
        Neuropsychopharmacology. 2009; 34: 2197-2207
        • de Jong T.R.
        • Snaphaan L.J.
        • Pattij T.
        • Veening J.G.
        • Waldinger M.D.
        • Cools A.R.
        • et al.
        Effects of chronic treatment with fluvoxamine and paroxetine during adolescence on serotonin-related behavior in adult male rats.
        Eur Neuropsychopharmacol. 2006; 16: 39-48
        • Bolaños C.A.
        • Nestler E.J.
        Neurotrophic mechanisms in drug addiction.
        Neuromolecular Med. 2004; 5: 69-83
        • Carlezon Jr, W.A.
        • Duman R.S.
        • Nestler E.J.
        The many faces of CREB.
        Trends Neurosci. 2005; 28: 436-445
        • Duman R.S.
        • Monteggia L.M.
        A neurotrophic model for stress-related mood disorders.
        Biol Psychiatry. 2006; 59: 1116-1127
        • Krishnan V.
        • Nestler E.J.
        The molecular neurobiology of depression.
        Nature. 2008; 455: 894-902
        • Carlezon Jr, W.A.
        • Konradi C.
        Understanding the neurobiological consequences of early exposure to psychotropic drugs: Linking behavior with molecules.
        Neuropharmacology. 2004; 47: 47-60
        • Adriani W.
        • Laviola G.
        Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model.
        Behav Pharmacol. 2004; 15: 341-352
        • Wiley M.D.
        • Poveromo L.B.
        • Antapasis J.
        • Herrera C.M.
        • Bolanos Guzman C.A.
        Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate.
        Neuropsychopharmacology. 2009; 34: 1339-1350
        • Sukoff Rizzo S.J.
        • Schechter L.E.
        • Rosenzweig-Lipson S.
        A novel approach for predicting antidepressant-induced sexual dysfunction in rats.
        Psychopharmacology (Berl). 2008; 195: 459-467
        • Cantor J.M.
        • Binik Y.M.
        • Pfaus J.G.
        Chronic fluoxetine inhibits sexual behavior in the male rat: Reversal with oxytocin.
        Psychopharmacology (Berl). 1999; 144: 355-362
        • Ferguson J.M.
        The effects of antidepressants on sexual functioning in depressed patients: A review.
        J Clin Psychiatry. 2001; 62: 22-34
        • Hull E.M.
        • Muschamp J.W.
        • Sato S.
        Dopamine and serotonin: Influences on male sexual behavior.
        Physiol Behav. 2004; 83: 291-307
        • Sukoff Rizzo S.J.
        • Pulicicchio C.
        • Malberg J.E.
        • Andree T.H.
        • Stack G.P.
        • Hughes Z.A.
        • et al.
        5-HT1A receptor antagonism reverses and prevents fluoxetine-induced sexual dysfunction in rats.
        Int J Neuropsychopharmacol. 2009; 12: 1045-1053
        • Li Q.
        • Muma N.A.
        • van de Kar L.D.
        Chronic fluoxetine induces a gradual desensitization of 5-HT1A receptors: Reductions in hypothalamic and midbrain Gi and G(o) proteins and in neuroendocrine responses to a 5-HT1A agonist.
        J Pharmacol Exp Ther. 1996; 279: 1035-1042
        • Barrot M.
        • Olivier J.D.
        • Perrotti L.I.
        • DiLeone R.J.
        • Berton O.
        • Eisch A.J.
        • et al.
        CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli.
        Proc Natl Acad Sci U S A. 2002; 99: 11435-11440
        • Barrot M.
        • Wallace D.L.
        • Bolanos C.A.
        • Graham D.L.
        • Perrotti L.I.
        • Neve R.L.
        • et al.
        Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens.
        Proc Natl Acad Sci U S A. 2005; 102: 8357-8362
        • Sturm V.
        • Lenartz D.
        • Koulousakis A.
        • Treuer H.
        • Herholz K.
        • Klein J.C.
        • et al.
        The nucleus accumbens: A target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders.
        J Chem Neuroanat. 2003; 26: 293-299