Advertisement

Maternal Influenza Infection During Pregnancy Impacts Postnatal Brain Development in the Rhesus Monkey

      Background

      Maternal infection with influenza and other pathogens during pregnancy has been associated with increased risk for schizophrenia and neurodevelopmental disorders. In rodent studies, maternal inflammatory responses to influenza affect fetal brain development. However, to verify the relevance of these findings to humans, research is needed in a primate species with more advanced prenatal corticogenesis.

      Methods

      Twelve pregnant rhesus monkeys were infected with influenza, A/Sydney/5/97 (H3N2), 1 month before term (early third trimester) and compared with 7 control pregnancies. Nasal swabs and blood samples confirmed viral shedding and immune activation. Structural magnetic resonance imaging was conducted at 1 year; behavioral development and cortisol reactivity were also assessed.

      Results

      Maternal infections were mild and self-limiting. At birth, maternally derived influenza-specific immunoglobulin G was present in the neonate, but there was no evidence of direct viral exposure. Birth weight and gestation length were not affected, nor were infant neuromotor, behavioral, and endocrine responses. However, magnetic resonance imaging analyses revealed significant reductions in cortical gray matter in flu-exposed animals. Regional analyses indicated the largest gray matter reductions occurred bilaterally in cingulate and parietal areas; white matter was also reduced significantly in the parietal lobe.

      Conclusions

      Influenza infection during pregnancy affects neural development in the monkey, reducing gray matter throughout most of the cortex and decreasing white matter in parietal cortex. These brain alterations are likely to be permanent, given that they were still present at the monkey-equivalent of older childhood and thus might increase the likelihood of later behavioral pathology.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brown A.S.
        Prenatal infection as a risk factor for schizophrenia.
        Schizophr Bull. 2006; 32: 200-202
        • Dammann O.
        • Leviton A.
        Maternal intrauterine infection, cytokines and brain damage in the preterm newborn.
        Pediatr Res. 1997; 42: 1-8
        • Gilmore J.H.
        • Jarskog L.F.
        • Vadlamudi S.
        • Lauder J.M.
        Prenatal infection and risk for schizophrenia: IL-1, IL-6, and TNF inhibit cortical neuron dendrite development.
        Neuropsychopharmacology. 2004; 29: 1221-1229
        • Gilmore J.H.
        • Jarskog L.F.
        • Vadlamudi S.
        Maternal Poly I: C exposure during pregnancy regulates TNFα, BDNF, and NGF expression in neonatal brain and the maternal–fetal unit of the rat.
        J Neuroimmunol. 2005; 159: 106-112
        • Mednick S.A.
        • Machon R.A.
        • Huttunen M.O.
        • Bonett D.
        Adult schizophrenia following prenatal exposure to an influenza Epidemic.
        Arch Gen Psychiatry. 1988; 45: 189-192
        • Meyer U.
        • Feldon J.
        • Schedlowski M.
        • Yee B.K.
        Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia.
        Neurosci Biobehav Rev. 2005; 29: 913-947
        • Irving W.L.
        • James D.K.
        • Stepheson T.
        • Laing P.
        • Jameson C.
        • Oxford J.S.
        • et al.
        Influenza virus infection in the second and third trimesters of pregnancy: A clinical and seroepidemiological study.
        Br J Obstet Gynaecol. 2000; 107: 1282-1289
        • Brown A.S.
        • Begg M.D.
        • Gravenstein S.
        • Schaefer C.A.
        • Wyatt R.J.
        • Bresnahan M.
        • et al.
        Serologic evidence of prenatal influenza in the etiology of schizophrenia.
        Arch Gen Psychiatry. 2004; 61: 774-780
        • Ellman L.M.
        • Yoken R.H.
        • Buka S.L.
        • Torrey F.
        • Cannon T.D.
        Cognitive functioning prior to the onset of psychosis: The role of fetal exposure to serological determined infection.
        Biol Psychiatry. 2009; 65: 1040-1047
        • McGrath J.J.
        • Pemberton M.R.
        • Welham J.L.
        • Murray R.M.
        Schizophrenia and the influenza epidemics of 1954, 1957, and 1959: A southern hemisphere study.
        Schizophr Res. 1994; 14: 1-8
        • Nawa H.
        • Takei N.
        Recent progress in animal modeling of immune inflammatory processes in schizophrenia: Implication of specific cytokines.
        Neurosci Res. 2006; 56: 2-13
        • Fatemi S.H.
        • Emamian E.S.
        • Akher P.
        • Sedgewick J.
        • Thuras P.
        • Bailey K.
        • et al.
        Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice.
        Synapse. 1998; 29: 84-88
        • Fatemi S.H.
        • Emamian E.S.
        • Kist D.
        • Sidwell R.W.
        • Nakajima K.
        • Akhter P.
        • et al.
        Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice.
        Mol Psychiatry. 1999; 4: 145-154
        • Fatemi S.H.
        • Emamian E.S.
        • Sidwell R.W.
        • Kist D.A.
        • Stary J.M.
        • Earle J.A.
        • et al.
        Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice.
        Mol Psychiatry. 2002; 7: 633-640
        • Fatemi S.H.
        • Reutiman T.J.
        • Folsom T.D.
        • Huang H.
        • Oishi K.
        • Mori S.
        • et al.
        Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders.
        Schizophr Res. 2008; 99: 56-70
        • Winter C.
        • Djodari-Irani A.
        • Sohr R.
        • Morgenstern R.
        • Feldon J.
        • Juckel G.
        • Meyer U.
        Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: Implications for brain disorders of neurodevelopmental origin such as schizophrenia.
        Int J Neuropsychopharmacol. 2009; 12: 513-524
        • Shi L.
        • Fatemi S.H.
        • Sidwell R.W.
        • Patterson P.H.
        Maternal influenza infection causes marked behavioral and pharamacological changes in the offspring.
        J Neurosci. 2003; 23: 297-302
        • Clancy B.
        • Finlay B.L.
        • Darlington R.B.
        • Anand K.J.S.
        Extrapolating brain development from experimental species to humans.
        Neurotoxicology. 2007; 28: 931-937
        • Clancy B.
        • Darlington B.
        • Finlay B.L.
        Translating developmental time across mammalian species.
        Neuroscience. 2001; 105: 7-17
        • LaMantia A.S.
        • Rakic P.
        Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey.
        J Neurosci. 1990; 10: 2156-2175
        • Collie M.H.
        • Sweet C.
        • Cavanagh D.
        • Smith H.
        Association of foetal wastage with influenza infection during ferret pregnancy.
        Br J Exp Pathol. 1978; 59: 190-195
        • Wesley R.D.
        Exposure or Sero-positive gilts to swine influenza virus may cause a few stillbirths per litter.
        Can J Vet Res. 2004; 68: 215-217
        • Harris J.W.
        Influenza occurring in pregnant women: A statistical study of thirteen hundred and fifty cases.
        JAMA. 1919; 72: 978-980
        • Aronsson F.
        • Lannebo C.
        • Paucar M.
        • Brask J.
        • Kristensson K.
        • Karlsson H.
        Persistence of viral RNA in the brain of offspring to mice infected with influenza A/WSN/33 virus during pregnancy.
        J Neurovirol. 2002; 8: 353-357
        • Gu J.
        • Xie Z.
        • Gao Z.
        • Liu J.
        • Korteweg C.
        • Ye J.
        • et al.
        H5N1 infection of the respiratory tract and beyond: A molecular pathology study.
        Lancet. 2007; 370: 1137-1145
        • Battaglia F.C.
        Placental transport: A function of permeability and perfusion.
        Am J Clin Nutr. 2007; 85: 591S-5597
        • Coe C.L.
        • Kemnitz J.W.
        • Schneider M.L.
        Vulnerability of placental antibody transfer and fetal complement synthesis to disturbance in the pregnant monkey.
        J Med Primatol. 1993; 22: 294-300
        • Coe C.L.
        • Lubach G.R.
        • Izard K.M.
        Progressive improvement in the transfer of maternal antibody across the order primates.
        Am J Primatol. 1994; 32: 51-55
        • Moffett A.
        • Loke C.
        Immunology of placentation in eutherian mammals.
        Nat Rev Immunol. 2006; 6: 584-594
        • Pere M.C.
        Materno-foetal exchanges and utilisation of nutrients by the foetus: Comparison between species.
        Reprod Nutr Dev. 2003; 43: 1-15
        • Rakic P.
        Specification of cerebral cortical areas.
        Science. 1988; 241: 170-176
        • Portman O.W.
        • Neuringer M.
        • Alexander M.
        Effects of maternal and long-term postnatal protein malnutrition on brain size and composition in rhesus monkey.
        J Nutr. 1987; 11: 1844-1851
        • Rigo J.J.R.
        • Szelenyi J.
        • Selmeczy Z.
        • Papp Z.
        • Vizi E.S.
        Endotoxin-induced TNF production changes inversely to its plasma level during pregnancy.
        Eur J Obstet Gynecol. 2004; 114: 236-238
        • Schneider M.L.
        • Suomi S.J.
        Neurobehavioral assessment in rhesus monkey neonates (Macaca mulatta): Developmental changes, behavioral stability, and early experience.
        Infant Behav Dev. 1992; 15: 155-177
        • Schneider M.L.
        • Roughton E.C.
        • Lubach G.R.
        Moderate alcohol consumption and psychological stress during pregnancy induces attention and neuromotor impairments in primate infants.
        Child Dev. 1997; 68: 747-759
        • Rosenblum L.A.
        The ontogeny of mother–infant relations in macaques.
        in: Moltz H. The Ontogeny of Vertebrate Behavior. Academic Press, New York1971: 315-367
        • Styner M.
        • Knickmeyer R.C.
        • Joshi S.
        • Coe C.L.
        • Short S.J.
        • Gilmore J.H.
        Automatic brain segmentation in rhesus monkeys.
        Spie PP. 2007; 65122: L65121-L65128
        • Knickmeyer R.C.
        • Styner M.
        • Short S.J.
        • Lubach G.R.
        • Kang C.
        • Hamer R.
        • et al.
        Maturational trajectories of cortical brain development through the pubertal transition: Unique species and gender differences in the monkey revealed through structural magnetic resonance imaging.
        Cereb Cortex. 2009; ([published online ahead of print August 24])
        • Rapoport J.L.
        • Addington A.M.
        • Frangou S.
        • Psych M.R.
        The neurodevelopmental model of schizophrenia: Update 2005.
        Mol Psychiatry. 2005; 10: 434-449
        • Spear L.P.
        Neurodevelopment during adolescence.
        in: Cicchetti D. Walker E.F. Neurodevelopmental Mechanisms in Psychopathology. Cambridge University Press, Cambridge2003: 62-83
        • Piontkewitz Y.
        • Assaf Y.
        • Weiner I.
        Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia.
        Biol Psychiatry. 2009; 66: 1038-1046
        • Brown A.S.
        • Susser E.S.
        In utero infection and adult schizophrenia.
        Ment Retard Dev Disabil Res Rev. 2002; 8: 51-57
        • Buka S.L.
        • Tsuang M.T.
        • Torrey E.F.
        • Klebanoff M.A.
        • Berstein D.
        • Yolken R.H.
        Maternal infections and subsequent psychosis among offspring.
        Arch Gen Psychiatry. 2001; 58: 1032-1037
        • Cannon T.D.
        • Thompson P.M.
        • van Erp T.G.M.
        • Toga A.W.
        • Veli-Pekka P.
        • Huttunen M.
        • et al.
        Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia.
        Proc Natl Acad Sci U S A. 2002; 99: 3228-3233
        • Pantelis C.
        Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia.
        Schizophr Bull. 2005; 31: 672-696
        • Wright I.
        • Rabe-Hesketh S.
        • Woodruff P.
        • David A.
        • Murray R.
        • Bullmore E.
        Meta-analysis of regional brain volumes in schizophrenia.
        Am J Psychiatry. 2000; 157: 16-25
        • Akbarian S.
        • Viñuela A.
        • Kim J.J.
        • Potkin S.G.
        • Bunney W.E.J.
        • Jones E.G.
        Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development.
        Arch Gen Psychiatry. 1993; 50: 178-187
        • Arnold S.E.
        • Trojanowski J.Q.
        Recent advances in defining the neuropathology of schizophrenia.
        Acta Neuropathol. 1996; 92: 217-231
        • Andreasen N.C.
        • Flashman L.
        • Flaum M.
        • Arndt S.
        • Swayze V.
        • O'Leary D.S.
        • et al.
        Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging.
        JAMA. 1994; 272: 1763-1769
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2004; 10: 40-68
        • Honea R.
        • Crow T.J.
        • Passingham D.
        • Mackay C.E.
        Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies.
        Am J Psychiatry. 2005; 162: 2233-2245
        • Steen R.G.
        • Mull C.
        • McClure R.
        • Hamer R.M.
        • Liberman J.A.
        Brain volume in first-episode schizophrenia: Systematic review and meta-analysis of magnetic resonance imaging studies.
        Br J Psychiatry. 2006; 188: 510-518
        • Cahn W.
        • Hulshoof H.E.
        • Bongers M.
        • Schnack H.G.
        • Mandl R.C.W.
        • Van Haren N.E.M.
        • et al.
        Brain morphology in antipsychotic-naïve schizophrenia: A study of multiple brain structures.
        Br J Psychiatry. 2002; 181: 266-272
        • Lawrie S.M.
        • Whalley H.C.
        • Abukmeil S.S.
        • Kestelman J.N.
        • Donnelly L.
        • Miller P.
        • et al.
        Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia.
        Biol Psychiatry. 2001; 49: 811-823
        • Job D.E.
        • Whalley H.C.
        • Johnstone E.C.
        • Lawrie S.M.
        Grey matter changes over time in high risk subjects developing schizophrenia.
        Neuroimage. 2005; 25: 1023-1030
        • Clarke M.C.
        • Cannon M.
        • Hogg M.W.
        • Marks M.N.
        • Conroy S.
        • Pawlby S.J.
        • et al.
        Foetal brain development in offspring of women with psychosis.
        Br J Psychiatry. 2007; 190: 445-446
        • Rakic P.
        Radial versus tangential migration of neuronal clones in the developing cerebral cortex.
        Proc Natl Acad Sci U S A. 1995; 92: 11323-11327
        • Hazlett E.
        • Buchsbaum M.
        • Haznedar M.
        • Newmark R.
        • Goldstein K.
        • Zelmanova Y.
        • et al.
        Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients.
        Schizophr Res. 2008; 101: 111-123
        • van Haren N.E.M.
        • Hulshoff Pol H.E.
        • Schnack H.G.
        • Cahn W.
        • Brans R.
        • Carati I.
        • et al.
        Progressive brain volume loss in schizophrenia over the course of the illness: Evidence of maturational abnormalities in early adulthood.
        Biol Psychiatry. 2007; 63: 106-113
        • Lim K.O.
        • Helpern J.A.
        Neuropsychiatric applications of DTI—A review.
        NMR Biomed. 2002; 15: 587-593
        • Ardekani B.A.
        • Nierenberg J.
        • Hoptman M.J.
        • Javitt D.C.
        • Lim K.O.
        MRI study of white matter diffusion anisotropy in schizophrenia.
        Neuroreport. 2003; 14: 2025-2029
        • Kubicki M.
        • McCarley R.
        • Westin C.F.
        • Park H.J.
        • Maier S.
        • Kikinis R.
        • et al.
        A review of diffusion tensor imaging studies in schizophrenia.
        J Psychiatr Res. 2007; 41: 15-30
        • Coe C.L.
        • Lubach G.R.
        • Shirtcliff E.
        Maternal stress during pregnancy predisposes for iron deficiency in infant monkeys impacting innate immunity.
        Pediatr Res. 2007; 61: 520-524
        • Jamieson D.J.
        • Honein M.A.
        • Rasmusen S.A.
        • Willaims J.L.
        • Swerdlow D.L.
        • Biggerstaff M.S.
        • et al.
        H1N1 2009 influenza virus infection during pregnancy in the USA.
        Lancet. 2009; 374: 451-458
        • Fortier M.E.
        • Luheshi G.N.
        • Boksa P.
        Effects of prenatal infection on PPI in rat depend upon nature of the infectious agent and stage of pregnancy.
        Behav Brain Res. 2007; 181: 270-277
        • Hodyl N.A.
        • Krivanek K.M.
        • Lawrence E.
        • Clifton V.L.
        • Hodgson D.M.
        Prenatal exposure to a pro-inflammatory stimulus causes delays in the development of the innate immune response to LPS in the offspring.
        J Neuroimmunol. 2007; 190: 61-71
        • Reul J.M.H.M.
        • Stec I.
        • Wiegers G.J.
        • Labeur M.S.
        • Linthorst A.C.E.
        • Arzt E.
        • et al.
        Prenatal immune challenge alters the hypothalamic-pituitary-adrenocortical axis in adult rats.
        J Clin Invest. 1994; 93: 2600-2607
        • Coe C.L.
        • Kramer M.
        • Czeh B.
        • Gould E.
        • Reeves A.J.
        • Kirschbaum C.
        • Fuchs E.
        Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys.
        Biol Psychiatry. 2003; 54: 1025-1034
        • Subbarao K.
        • Swayne D.
        • Olsen C.W.
        Epidemiology and control of human and animal influenza.
        in: Kawaoka Y. Influenza Virology: Current Topics. Caister Academic Press, Wymondham, United Kingdom2006: 229-280
        • Sidwell R.W.
        The mouse model of influenza virus infection.
        in: Zak O. Sande M.A. Handbook of Animal Models of Infection: Experimental Models in Antimicrobial Therapy. Academic Press, London, United Kingdom1999: 981-988
        • Rimmelzwaan G.F.
        • Kuiken T.
        • van Amerongen G.
        • Bestebroer T.M.
        • Fouchier T.A.
        • Osterhous A.D.
        Pathogenesis of influenza A (H5N1) virus infection in a primate model.
        J Virol. 2001; 75: 6687-6691
        • Rimmelzwaan G.F.
        • Kuiken T.
        • van Amerongen G.
        • Bestebroer T.M.
        • Fouchier T.A.
        • Osterhous A.D.
        A primate model to study the pathogenesis of influenza A (H5N1) virus infection.
        Avian Dis. 2003; 47: 931-933
        • Smith S.
        • Li J.
        • Garbett K.
        • Mirnics K.
        • Patterson P.
        Maternal immune activation alters fetal brain development through interleukin-6.
        J Neurosci. 2007; 27: 10695-10702
        • Urakubo A.
        • Jarskog L.F.
        • Lieberman J.A.
        • Gilmore J.H.
        Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain.
        Schizophr Res. 2001; 47: 27-36
        • Meyer U.
        • Nyffeler M.
        • Engler A.
        • Urwyler A.
        • Schedlowski M.
        • Knuesel I.
        • et al.
        The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.
        J Neurosci. 2006; 26: 4752-4762
        • Rees S.
        • Harding R.
        Brain development during fetal life: Influences of the intra-uterine environment.
        Neurosci Lett. 2004; 361: 111-114