Advertisement
Archival Report| Volume 66, ISSUE 12, P1107-1114, December 15, 2009

Laboratory Induced Aggression: A Positron Emission Tomography Study of Aggressive Individuals with Borderline Personality Disorder

Published:September 14, 2009DOI:https://doi.org/10.1016/j.biopsych.2009.07.015

      Background

      Borderline personality disorder (BPD) is often associated with symptoms of impulsive aggression, which poses a threat to patients themselves and to others. Preclinical studies show that orbital frontal cortex (OFC) plays a role in regulating impulsive aggression. Prior work has found OFC dysfunction in BPD.

      Methods

      We employed a task to provoke aggressive behavior, the Point Subtraction Aggression Paradigm (PSAP), which has never previously been used during functional brain imaging. Thirty-eight BPD patients with intermittent explosive disorder (BPD-IED) and 36 age-matched healthy control subjects (HCs) received 18fluoro-deoxyglucose positron emission tomography (18FDG-PET) on two occasions with a provocation and nonprovocation version of the PSAP. Mean relative glucose metabolism was measured throughout the cortex, and difference scores (provoked − nonprovoked) were calculated. A whole brain exploratory analysis for the double difference of BPD-IED − HC for provoked − nonprovoked was also conducted.

      Results

      BPD-IED patients were significantly more aggressive than HCs on the PSAP. BPD-IED patients also increased relative glucose metabolic rate (rGMR) in OFC and amygdala when provoked, while HCs decreased rGMR in these areas. However, HCs increased rGMR in anterior, medial, and dorsolateral prefrontal regions during provocation more than BPD-IED patients.

      Conclusions

      Patients responded aggressively and showed heightened rGMR in emotional brain areas, including amygdala and OFC, in response to provocation but not in more dorsal brain regions associated with cognitive control of aggression. In contrast, HCs increased rGMR in dorsal regions of PFC during aggression provocation, brain regions involved in top-down cognitive control of aggression, and, more broadly, of emotion.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Porcerelli J.H.
        • Cogan R.
        • Hibbard S.
        Personality characteristics of partner violent men: A Q-sort approach.
        J Pers Disord. 2004; 18: 151-162
        • Sanislow C.A.
        • Grilo C.M.
        • McGlashan T.H.
        Factor analysis of the DSM-III-R borderline personality disorder criteria in psychiatric inpatients.
        Am J Psychiatry. 2000; 157: 1629-1633
        • Sanislow C.A.
        • Grilo C.M.
        • Morey L.C.
        • Bender D.S.
        • Skodol A.E.
        • Gunderson J.G.
        • et al.
        Confirmatory factor analysis of DSM-IV criteria for borderline personality disorder: Findings from the collaborative longitudinal personality disorders study.
        Am J Psychiatry. 2002; 159: 284-290
        • Tebartz van Elst L.
        • Hesslinger B.
        • Thiel T.
        • Geiger E.
        • Haegele K.
        • Lemieux L.
        • et al.
        Frontolimbic brain abnormalities in patients with borderline personality disorder: A volumetric magnetic resonance imaging study.
        Biol Psychiatry. 2003; 54: 163-171
        • Hazlett E.A.
        • New A.S.
        • Newmark R.
        • Haznedar M.M.
        • Lo J.N.
        • Speiser L.J.
        • et al.
        Reduced anterior and posterior cingulate gray matter in borderline personality disorder.
        Biol Psychiatry. 2005; 58: 614-623
        • New A.S.
        • Hazlett E.A.
        • Buchsbaum M.S.
        • Goodman M.
        • Reynolds D.
        • Mitropoulou V.
        • et al.
        Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chloropiperazine in impulsive aggression.
        Arch Gen Psychiatry. 2002; 59: 621-629
        • Soloff P.H.
        • Meltzer C.C.
        • Greer P.J.
        • Constantine D.
        • Kelly T.M.
        A fenfluramine-activated FDG-PET study of borderline personality disorder.
        Biol Psychiatry. 2000; 47: 540-547
        • Chanen A.M.
        • Velakoulis D.
        • Carison K.
        • Gaunson K.
        • Wood S.J.
        • Yuen H.P.
        • et al.
        Orbitofrontal, amygdala and hippocampal volumes in teenagers with first-presentation borderline personality disorder.
        Psychiatry Res. 2008; 163: 116-125
        • Goyer P.F.
        • Andreason P.J.
        • Semple W.E.
        • Clayton A.H.
        • King A.C.
        • Compton-Toth B.A.
        • et al.
        Positron-emission-tomography and personality disorders.
        Neuropsychopharmacology. 1994; 10: 21-28
        • Soloff P.H.
        • Meltzer C.C.
        • Becker C.
        • Greer P.J.
        • Kelly T.M.
        • Constantine D.
        Impulsivity and prefrontal hypometabolism in borderline personality disorder.
        Psychiatry Res. 2003; 123: 153-163
        • de la Fuente J.M.
        • Goldman S.
        • Stanus E.
        • Vizuete C.
        • Morlan I.
        • Bobes J.
        • et al.
        Brain glucose metabolism in borderline personality disorder.
        J Psychiatr Res. 1997; 31: 531-541
        • Schmahl C.G.
        • Elzinga B.M.
        • Vermetten E.
        • Sanislow C.
        • McGlashan T.H.
        • Bremner J.D.
        Neural correlates of memories of abandonment in women with and without borderline personality disorder.
        Biol Psychiatry. 2003; 54: 142-151
        • Schmahl C.G.
        • Vermetten E.
        • Elzinga B.M.
        • Bremner J.D.
        A positron emission tomography study of memories of childhood abuse in borderline personality disorder.
        Biol Psychiatry. 2004; 55: 759-765
        • Minzenberg M.J.
        • Fan J.
        • New A.S.
        • Tang C.Y.
        • Siever L.J.
        Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: An event-related fMRI study.
        Psychiatry Res. 2007; 155: 231-243
        • Coccaro E.F.
        • McCloskey M.S.
        • Fitzgerald D.A.
        • Phan K.L.
        Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression.
        Biol Psychiatry. 2007; 62: 168-178
        • Silbersweig D.
        • Clarkin J.F.
        • Goldstein M.
        • Kernberg O.F.
        • Tuescher O.
        • Levy K.N.
        • et al.
        Failure of frontolimbic inhibitory function in the context of negative emotion in borderline personality disorder.
        Am J Psychiatry. 2007; 164: 1832-1841
        • New A.S.
        • Hazlett E.A.
        • Buchsbaum M.S.
        • Goodman M.
        • Mitelman S.A.
        • Newmark R.
        • et al.
        Amygdala-prefrontal disconnection in borderline personality disorder.
        Neuropsychopharmacology. 2007; 32: 1629-1640
        • Pribram K.H.
        • Bragshaw M.
        Further analysis of the temporal lobe syndrome utilizing frontotemporal ablation.
        J Comp Neurol. 1953; 99: 347-375
        • Butter C.M.
        • Snyder D.R.
        • McDonald J.A.
        Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys.
        J Comp Physiol Psychol. 1970; 72: 132-144
        • Butter C.M.
        • Snyder D.R.
        Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys.
        Acta Neurobiol Exp (Wars). 1972; 32: 525-565
        • Machado C.J.
        • Bachevalier J.
        The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta).
        Behav Neurosci. 2006; 120: 761-786
        • Luria A.
        Higher Cortical Functions in Man.
        Basic Books, New York1980
        • Damasio H.
        • Grabowski T.
        • Frank R.
        • Galaburda A.
        • Damasio A.R.
        The return of Phineas Gage: Clues about the brain from the skull of a famous patient.
        Science. 1994; 264: 1102-1105
        • Grafman J.
        • Schwab K.
        • Warden D.
        • Pridgen A.
        • Brown H.
        • Salazar A.
        Frontal lobe injuries, violence, and aggression: A report of the Vietnam head injury study.
        Neurology. 1996; 46: 1231-1238
        • Davidson R.J.
        • Putnam K.M.
        • Larson C.L.
        Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence.
        Science. 2000; 289: 591-594
        • Blair R.J.
        The roles of orbital frontal cortex in the modulation of antisocial behavior.
        Brain Cogn. 2004; 55: 198-208
        • Raine A.
        • Buchsbaum M.S.
        • Stanley J.
        • Lottenberg S.
        • Abel L.
        • Stoddard J.
        Selective reductions in prefrontal glucose metabolism in murderers.
        Biol Psychiatry. 1994; 36: 365-373
        • Raine A.
        • Buchsbaum M.
        • LaCasse L.
        Brain abnormalities in murderers indicated by positron emission tomography.
        Biol Psychiatry. 1997; 42: 495-508
        • George D.T.
        • Rawlings R.R.
        • Williams W.A.
        • Phillips M.J.
        • Fong G.
        • Kerich M.
        • et al.
        A select group of perpetrators of domestic violence: Evidence of decreased metabolism in the right hypothalamus and reduced relationships between cortical/subcortical brain structures in position emission tomography.
        Psychiatry Res. 2004; 130: 11-25
        • Kimbrell T.A.
        • George M.S.
        • Parekh P.I.
        • Ketter T.A.
        • Podell D.M.
        • Danielson A.L.
        • et al.
        Regional brain activity during transient self-induced anxiety and anger in healthy adults.
        Biol Psychiatry. 1999; 46: 454-465
        • Dougherty D.D.
        • Shin L.M.
        • Alpert N.M.
        • Pitman R.K.
        • Orr S.P.
        • Lasko M.
        • et al.
        Anger in healthy men: A PET study using script-driven imagery.
        Biol Psychiatry. 1999; 46: 466-472
        • Pietrini P.
        • Guazzelli M.
        • Vasso G.
        • Jaffe K.
        • Grafman J.
        Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects.
        Am J Psychiatry. 2000; 157: 1772-1781
        • Cherek D.R.
        • Moeller F.G.
        • Dougherty D.M.
        • Rhoades H.
        Studies of violent and non-violent male paroles.
        Biol Psychiatry. 1997; 41: 523-529
        • Coccaro E.F.
        • Kavoussi R.
        • Berman M.
        • Lish J.
        Intermittent explosive disorder-revised: Development, reliability, and validity of research criteria.
        Compr Psychiatry. 1998; 39: 368-376
        • First M.
        • Spitzer R.
        • Gibbon M.
        • Williams J.
        Structured Clinical Interview for Axis I Disorders-Patient Edition.
        New York Biometrics Research, New York State Psychiatric Institute, New York1996
        • Pfohl B.
        • Blum N.
        • Zimmerman M.
        Structured Clinical Interview for DSM-IV.
        American Psychiatric Publishing, Washington, DC1996
        • Swartz M.
        • Blazer D.
        • George L.
        • Winfield I.
        Estimating the prevalence of borderline personality disorder in the community.
        J Pers Disord. 1990; 4: 257-272
        • Liberzon I.
        • Martis B.
        Neuroimaging studies of emotional responses in PTSD.
        Ann N Y Acad Sci. 2006; 1071: 87-109
        • Drevets W.C.
        Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression.
        Prog Brain Res. 2000; 126: 413-431
        • Coccaro E.F.
        Intermittent explosive disorder.
        in: Coccaro E.F. Aggression: Psychiatric Assessment and Treatment. Marcel Dekker, New York2003: 149-199
        • McCloskey M.S.
        • Berman M.E.
        • Noblett K.L.
        • Coccaro E.F.
        Intermittent explosive disorder-integrated research diagnostic criteria: Convergent and discriminant validity.
        J Psychiatr Res. 2006; 40: 231-242
        • Barratt E.S.
        Factor analysis of some psychometric measures of impulsiveness and anxiety.
        Psychol Rep. 1965; 16: 547-554
        • Harvey P.
        • Greenberg B.
        • Serper M.
        The affective lability scales: Development reliability and validity.
        J Clin Psychol. 1989; 45: 786-793
        • Beck A.T.
        • Ward C.H.
        • Mendelson M.
        • Mock J.
        • Erbaugh J.
        An inventory for measuring depression.
        Arch Gen Psychiatry. 1961; 4: 561-571
        • Spielberger C.
        State-Trait Anger Expression Inventory, Research Edition.
        Psychological Assessment Resources, Odessa, FL1988
        • Buss A.H.
        • Durkee A.
        An inventory for assessing different kinds of hostility.
        J Consult Psychol. 1957; 21: 343-348
        • Buss A.
        • Perry M.
        The Aggression Questionnaire.
        J Pers Soc Psychol. 1992; 63: 452-459
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh Inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Cherek D.R.
        • Moeller F.G.
        • Schnapp W.
        • Dougherty D.M.
        Studies of violent and nonviolent male parolees.
        Biol Psychiatry. 1997; 41: 514-522
        • Haznedar M.
        • Buchsbaum M.S.
        • Metzer M.
        • Solimando A.
        • Speigel-Cohen J.
        • Hollander E.
        Anterior cingulate gyrus volume in glucose metabolism in autistic disorder.
        Am J Psychiatry. 1997; 154: 1043-1045
        • Hazlett E.A.
        • Buchsbaum M.S.
        • Hsieh P.
        • Haznedar M.M.
        • Platholi J.
        • Licalzi E.M.
        • et al.
        Regional glucose metabolism within cortical Brodmann's areas in healthy individuals and autistic patients.
        Neuropsychobiology. 2004; 49: 115-125
        • Buchsbaum M.S.
        • Haznedar M.M.
        • Aronowitz J.
        • Brickman A.M.
        • Newmark R.E.
        • Bloom R.
        • et al.
        FDG-PET in never-previously medicated psychotic adolescents treated with olanzapine or haloperidol.
        Schizophr Res. 2007; 94: 293-305
        • Hazlett E.A.
        • Buchsbaum M.S.
        • Jeu L.
        • Nenadic I.
        • Fleischman M.B.
        • Shihabuddin L.
        • et al.
        Hyporfrontality in unmedicated schizophrenia patients studied with PET during performance of a serial verbal learning task.
        Schizophr Res. 2000; 43: 33-46
        • Buchsbaum M.S.
        • Hollander E.
        • Haznedar M.M.
        • Tang C.Y.
        • Spiegel-Cohen J.
        • Wei T.C.
        • et al.
        Effect of fluoxetine on regional cerebral metabolism in autistic spectrum disorders: A pilot study.
        Int J Neuropsychopharmacol. 2001; 4: 119-125
        • Buchsbaum M.S.
        • Nenadic I.
        • Hazlett E.A.
        • Spiegel-Cohen J.
        • Fleischman M.B.
        • Akhavan A.
        • et al.
        Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder.
        Schizophr Res. 2002; 54: 141-150
        • Mitelman S.A.
        • Buchsbaum M.S.
        • Brickman A.M.
        • Shihabuddin L.
        Cortical intercorrelations of frontal area volumes in schizophrenia.
        Neuroimage. 2005; 27: 753-770
        • Haznedar M.
        • Buchsbaum M.S.
        • Wei T.
        • Hof P.R.
        • Cartwright C.
        • Bienstock C.
        • Hollander E.
        Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging.
        Am J Psychiatry. 2000; 157: 1994-2001
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-S219
        • McGlashan T.H.
        • Grilo C.M.
        • Skodol A.E.
        • Gunderson J.G.
        • Shea M.T.
        • Morey L.C.
        • et al.
        The Collaborative Longitudinal Personality Disorders Study: Baseline Axis I/II and II/II diagnostic co-occurence.
        Acta Psychiatr Scand. 2000; 102: 256-264
        • Volkow N.D.
        • Tancredi L.
        Neural substrates of violent behavior: A preliminary study with positron emission tomography.
        Br J Psychiatry. 1987; 151: 668-673
        • Marcus R.F.
        Cross-sectional study of violence in emerging adulthood.
        Aggress Behav. 2008; 35: 188-202
        • Swan S.C.
        • Gambone L.J.
        • Caldwell J.E.
        • Sullivan T.P.
        • Snow D.L.
        A review of research on women's use of violence with male intimate partners.
        Violence Vict. 2008; 23: 301-314