Advertisement

Case-Control Study of Six Genes Asymmetrically Expressed in the Two Cerebral Hemispheres: Association of BAIAP2 with Attention-Deficit/Hyperactivity Disorder

Published:September 07, 2009DOI:https://doi.org/10.1016/j.biopsych.2009.06.024

      Background

      Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disease that persists into adulthood in at least 30% of patients. There is evidence suggesting that abnormal left-right brain asymmetries in ADHD patients may be involved in a variety of ADHD-related cognitive processes, including sustained attention, working memory, response inhibition and planning. Although mechanisms underlying cerebral lateralization are unknown, left-right cortical asymmetry has been associated with transcriptional asymmetry at embryonic stages and several genes differentially expressed between hemispheres have been identified.

      Methods

      We selected six functional candidate genes showing at least 1.9-fold differential expression between hemispheres (BAIAP2, DAPPER1, LMO4, NEUROD6, ATP2B3, and ID2) and performed a case-control association study in an initial Spanish sample of 587 ADHD patients (270 adults and 317 children) and 587 control subjects.

      Results

      The single- and multiple-marker analysis provided evidence for a contribution of BAIAP2 to adulthood ADHD (p = .0026 and p = .0016, respectively). We thus tested BAIAP2 for replication in two independent adult samples from Germany (639 ADHD patients and 612 control subjects) and Norway (417 ADHD cases and 469 control subjects). While no significant results were observed in the Norwegian sample, we replicated the initial association between BAIAP2 and adulthood ADHD in the German population (p = .0062).

      Conclusions

      Our results support the participation of BAIAP2 in the continuity of ADHD across life span, at least in some of the populations analyzed, and suggest that genetic factors potentially influencing abnormal cerebral lateralization may be involved in this disorder.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Biederman J.
        • Faraone S.V.
        Attention-deficit hyperactivity disorder.
        Lancet. 2005; 366: 237-248
        • Kessler R.C.
        • Adler L.
        • Barkley R.
        • Biederman J.
        • Conners C.K.
        • Demler O.
        • et al.
        The prevalence and correlates of adult ADHD in the United States: Results from the National Comorbidity Survey Replication.
        Am J Psychiatry. 2006; 163: 716-723
        • Fayyad J.
        • De Graaf R.
        • Kessler R.
        • Alonso J.
        • Angermeyer M.
        • Demyttenaere K.
        • et al.
        Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder.
        Br J Psychiatry. 2007; 190: 402-409
        • Polanczyk G.
        • de Lima M.S.
        • Horta B.L.
        • Biederman J.
        • Rohde L.A.
        The worldwide prevalence of ADHD: A systematic review and metaregression analysis.
        Am J Psychiatry. 2007; 164: 942-948
        • Biederman J.
        • Faraone S.V.
        • Mick E.
        • Spencer T.
        • Wilens T.
        • Kiely K.
        • et al.
        High risk for attention deficit hyperactivity disorder among children of parents with childhood onset of the disorder: A pilot study.
        Am J Psychiatry. 1995; 152: 431-435
        • Biederman J.
        • Faraone S.
        • Milberger S.
        • Curtis S.
        • Chen L.
        • Marrs A.
        • et al.
        Predictors of persistence and remission of ADHD into adolescence: Results from a four-year prospective follow-up study.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 343-351
        • Faraone S.V.
        • Biederman J.
        • Feighner J.A.
        • Monuteaux M.C.
        Assessing symptoms of attention deficit hyperactivity disorder in children and adults: Which is more valid?.
        J Consult Clin Psychol. 2000; 68: 830-842
        • Faraone S.V.
        • Biederman J.
        • Monuteaux M.C.
        Toward guidelines for pedigree selection in genetic studies of attention deficit hyperactivity disorder.
        Genet Epidemiol. 2000; 18: 1-16
        • Ribases M.
        • Ramos-Quiroga J.A.
        • Hervas A.
        • Bosch R.
        • Bielsa A.
        • Gastaminza X.
        • et al.
        Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB.
        Mol Psychiatry. 2009; 14: 71-85
        • Fassbender C.
        • Schweitzer J.B.
        Is there evidence for neural compensation in attention deficit hyperactivity disorder?.
        Clin Psychol Rev. 2006; 26: 445-465
        • Paule M.G.
        • Rowland A.S.
        • Ferguson S.A.
        • Chelonis J.J.
        • Tannock R.
        • Swanson J.M.
        • Castellanos F.X.
        Attention deficit/hyperactivity disorder: Characteristics, interventions and models.
        Neurotoxicol Teratol. 2000; 22: 631-651
        • Valera E.M.
        • Faraone S.V.
        • Biederman J.
        • Poldrack R.A.
        • Seidman L.J.
        Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2005; 57: 439-447
        • Sowell E.R.
        • Thompson P.M.
        • Welcome S.E.
        • Henkenius A.L.
        • Toga A.W.
        • Peterson B.S.
        Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder.
        Lancet. 2003; 362: 1699-1707
        • Schulz K.P.
        • Newcorn J.H.
        • Fan J.
        • Tang C.Y.
        • Halperin J.M.
        Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescent boys.
        J Am Acad Child Adolesc Psychiatry. 2005; 44: 47-54
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Vaituzis A.C.
        • Dickstein D.P.
        • et al.
        Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder.
        Arch Gen Psychiatry. 1996; 53: 607-616
        • Castellanos F.X.
        • Giedd J.N.
        • Eckburg P.
        • Marsh W.L.
        • Vaituzis A.C.
        • Kaysen D.
        • et al.
        Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder.
        Am J Psychiatry. 1994; 151: 1791-1796
        • Mostofsky S.H.
        • Cooper K.L.
        • Kates W.R.
        • Denckla M.B.
        • Kaufmann W.E.
        Smaller prefrontal and premotor volumes in boys with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2002; 52: 785-794
        • Filipek P.A.
        • Semrud-Clikeman M.
        • Steingard R.J.
        • Renshaw P.F.
        • Kennedy D.N.
        • Biederman J.
        Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls.
        Neurology. 1997; 48: 589-601
        • Hynd G.W.
        • Hern K.L.
        • Novey E.S.
        • Eliopulos D.
        • Marshall R.
        • Gonzalez J.J.
        • Voeller K.K.
        Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus.
        J Child Neurol. 1993; 8: 339-347
        • Mataro M.
        • Garcia-Sanchez C.
        • Junque C.
        • Estevez-Gonzalez A.
        • Pujol J.
        Magnetic resonance imaging measurement of the caudate nucleus in adolescents with attention-deficit hyperactivity disorder and its relationship with neuropsychological and behavioral measures.
        Arch Neurol. 1997; 54: 963-968
        • Hynd G.W.
        • Semrud-Clikeman M.
        • Lorys A.R.
        • Novey E.S.
        • Eliopulos D.
        Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity.
        Arch Neurol. 1990; 47: 919-926
        • Aylward E.H.
        • Reiss A.L.
        • Reader M.J.
        • Singer H.S.
        • Brown J.E.
        • Denckla M.B.
        Basal ganglia volumes in children with attention-deficit hyperactivity disorder.
        J Child Neurol. 1996; 11: 112-115
        • Vance A.
        • Silk T.J.
        • Casey M.
        • Rinehart N.J.
        • Bradshaw J.L.
        • Bellgrove M.A.
        • Cunnington R.
        Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: A functional MRI study.
        Mol Psychiatry. 2007; 12: 826-832
        • Pliszka S.R.
        • Liotti M.
        • Woldorff M.G.
        Inhibitory control in children with attention-deficit/hyperactivity disorder: Event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism.
        Biol Psychiatry. 2000; 48: 238-246
        • Rubia K.
        • Overmeyer S.
        • Taylor E.
        • Brammer M.
        • Williams S.C.
        • Simmons A.
        • Bullmore E.T.
        Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI.
        Am J Psychiatry. 1999; 156: 891-896
        • Steger J.
        • Imhof K.
        • Steinhausen H.
        • Brandeis D.
        Brain mapping of bilateral interactions in attention deficit hyperactivity disorder and control boys.
        Clin Neurophysiol. 2000; 111: 1141-1156
        • Hale T.S.
        • Zaidel E.
        • McGough J.J.
        • Phillips J.M.
        • McCracken J.T.
        Atypical brain laterality in adults with ADHD during dichotic listening for emotional intonation and words.
        Neuropsychologia. 2006; 44: 896-904
        • Langleben D.D.
        • Austin G.
        • Krikorian G.
        • Ridlehuber H.W.
        • Goris M.L.
        • Strauss H.W.
        Interhemispheric asymmetry of regional cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder.
        Nucl Med Commun. 2001; 22: 1333-1340
        • Garcia-Sanchez C.
        • Estevez-Gonzalez A.
        • Suarez-Romero E.
        • Junque C.
        Right hemisphere dysfunction in subjects with attention-deficit disorder with and without hyperactivity.
        J Child Neurol. 1997; 12: 107-115
        • Buchmann J.
        • Wolters A.
        • Haessler F.
        • Bohne S.
        • Nordbeck R.
        • Kunesch E.
        Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD).
        Clin Neurophysiol. 2003; 114: 2036-2042
        • Hale T.S.
        • Loo S.K.
        • Zaidel E.
        • Hanada G.
        • Macion J.
        • Smalley S.L.
        Rethinking a right hemisphere deficit in ADHD.
        J Atten Disord. 2009; 13: 3-17
        • Casey B.J.
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Schubert A.B.
        • et al.
        Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 374-383
        • Heilman K.M.
        • Voeller K.K.
        • Nadeau S.E.
        A possible pathophysiologic substrate of attention deficit hyperactivity disorder.
        J Child Neurol. 1991; 6: S76-S81
        • Sheppard D.M.
        • Bradshaw J.L.
        • Mattingley J.B.
        • Lee P.
        Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder.
        J Neurol Neurosurg Psychiatry. 1999; 66: 57-63
        • Rubia K.
        • Taylor E.
        • Smith A.B.
        • Oksanen H.
        • Overmeyer S.
        • Newman S.
        Neuropsychological analyses of impulsiveness in childhood hyperactivity.
        Br J Psychiatry. 2001; 179: 138-143
        • Heilman K.M.
        • Van Den Abell T.
        Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect).
        Neurology. 1980; 30: 327-330
        • Heilman K.M.
        • Bowers D.
        • Valenstein E.
        • Watson R.T.
        The right hemisphere: Neuropsychological functions.
        J Neurosurg. 1986; 64: 693-704
        • Lou H.C.
        • Henriksen L.
        • Bruhn P.
        • Borner H.
        • Nielsen J.B.
        Striatal dysfunction in attention deficit and hyperkinetic disorder.
        Arch Neurol. 1989; 46: 48-52
        • Geschwind D.H.
        • Miller B.L.
        Molecular approaches to cerebral laterality: Development and neurodegeneration.
        Am J Med Genet. 2001; 101: 370-381
        • Geschwind D.H.
        • Miller B.L.
        • DeCarli C.
        • Carmelli D.
        Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness.
        Proc Natl Acad Sci U S A. 2002; 99: 3176-3181
        • Thompson P.M.
        • Cannon T.D.
        • Narr K.L.
        • van Erp T.
        • Putanen V.P.
        • Huttunen M.
        • et al.
        Genetic influences on brain structure.
        Nat Neurosci. 2001; 4: 1253-1258
        • Sun T.
        • Patoine C.
        • Abu-Khalil A.
        • Visvader J.
        • Sum E.
        • Cherry T.J.
        • et al.
        Early asymmetry of gene transcription in embryonic human left and right cerebral cortex.
        Science. 2005; 308: 1794-1798
        • Reif A.
        • Jacob C.P.
        • Rujescu D.
        • Herterich S.
        • Lang S.
        • Gutknecht L.
        • et al.
        Functional variant of neuronal NO synthase influences impulsive behaviors in humans.
        Arch Gen Psychiatry. 2009; 66: 41-50
        • Lesch K.P.
        • Timmesfeld N.
        • Renner T.J.
        • Halperin R.
        • Röser C.
        • Nguyen T.T.
        • et al.
        Molecular genetics of adult ADHD: Converging evidence from genome-wide association and extended pedigree linkage studies.
        J Neural Transm. 2008; 115: 1573-1585
        • Sánchez-Mora C.
        • Ribasés M.
        • Ramos-Quiroga J.A.
        • Casas M.
        • Bosch R.
        • Boreatti-Hümmer A.
        • et al.
        Meta-analysis of brain-derived neurotrophic factor p.Val66Met in adult ADHD in four European populations.
        Am J Med Genet B Neuropsychiatr Genet. 2009; ([published online ahead of print July 14])
        • Kuntsi J.
        • Rijsdijk F.
        • Ronald A.
        • Asherson P.
        • Plomin R.
        Genetic influences on the stability of attention-deficit/hyperactivity disorder symptoms from early to middle childhood.
        Biol Psychiatry. 2005; 57: 647-654
        • Wittchen H.U.
        • Wunderlich U.
        • Grushwitz S.
        • Zaudig M.
        SKID I.
        Hogrefe, Göttingen, Germany1997
        • Cloninger C.R.
        • Przybeck T.R.
        • Svrakic D.M.
        The Tridimensional Personality Questionnaire: U.S. normative data.
        Psychol Rep. 1991; 69: 1047-1057
        • Costa Jr, P.T.
        • McCrae R.R.
        Domains and facets: Hierarchical personality assessment using the revised NEO Personality Inventory.
        J Pers Assess. 1995; 64: 21-50
        • Retz-Junginger P.
        • Retz W.
        • Blocher D.
        • Weijers H.G.
        • Trott G.E.
        • Wender P.H.
        • Rossler M.
        [Wender Utah Rating Scale. The short-version for the assessment of the attention-deficit hyperactivity disorder in adults].
        Nervenarzt. 2002; 73: 830-838
        • World Health Organization
        International Statistical Classification of Diseases, 10th Revision.
        (ICD-10) World Health Organization, Geneva1992
        • Kessler R.C.
        • Adler L.
        • Ames M.
        • Demler O.
        • Faraone S.
        • Hiripi E.
        • et al.
        The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population.
        Psychol Med. 2005; 35: 245-256
        • Ward M.F.
        • Wender P.H.
        • Reimherr F.W.
        The Wender Utah Rating Scale: An aid in the retrospective diagnosis of childhood attention deficit hyperactivity disorder.
        Am J Psychiatry. 1993; 150: 885-890
        • Sanchez J.J.
        • Phillips C.
        • Borsting C.
        • Balogh K.
        • Bogus M.
        • Fondevila M.
        • et al.
        A multiplex assay with 52 single nucleotide polymorphisms for human identification.
        Electrophoresis. 2006; 27: 1713-1724
        • Purcell S.
        • Cherny S.S.
        • Sham P.C.
        Genetic Power Calculator: Design of linkage and association genetic mapping studies of complex traits.
        Bioinformatics. 2003; 19: 149-150
        • Gonzalez J.R.
        • Armengol L.
        • Sole X.
        • Guino E.
        • Mercader J.M.
        • Estivill X.
        • Moreno V.
        SNPassoc: An R package to perform whole genome association studies.
        Bioinformatics. 2007; 23: 644-645
        • Stephens M.
        • Smith N.J.
        • Donnelly P.
        A new statistical method for haplotype reconstruction from population data.
        Am J Hum Genet. 2001; 68: 978-989
        • Dudbridge F.
        Pedigree disequilibrium tests for multilocus haplotypes.
        Genet Epidemiol. 2003; 25: 115-121
        • Fallin D.
        • Schork N.J.
        Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data.
        Am J Hum Genet. 2000; 67: 947-959
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Toga A.W.
        • Thompson P.M.
        Mapping brain asymmetry.
        Nat Rev Neurosci. 2003; 4: 37-48
        • Smalley S.L.
        • Loo S.K.
        • Yang M.H.
        • Cantor R.M.
        Toward localizing genes underlying cerebral asymmetry and mental health.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 135: 79-84
        • Oades R.D.
        Frontal, temporal and lateralized brain function in children with attention-deficit hyperactivity disorder: A psychophysiological and neuropsychological viewpoint on development.
        Behav Brain Res. 1998; 94: 83-95
        • Kraft P.
        Curses—winner's and otherwise—in genetic epidemiology.
        Epidemiology. 2008; 19: 649-651
        • Beck K.D.
        • Knusel B.
        • Hefti F.
        The nature of the trophic action of brain-derived neurotrophic factor, des(1-3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture.
        Neuroscience. 1993; 52: 855-866
        • Russo S.J.
        • Bolanos C.A.
        • Theobald D.E.
        • DeCarolis N.A.
        • Renthal W.
        • Kumar A.
        • et al.
        IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates.
        Nat Neurosci. 2007; 10: 93-99
        • Figlewicz D.P.
        • Evans S.B.
        • Murphy J.
        • Hoen M.
        • Baskin D.G.
        Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat.
        Brain Res. 2003; 964: 107-115
        • Knusel B.
        • Michel P.P.
        • Schwaber J.S.
        • Hefti F.
        Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II.
        J Neurosci. 1990; 10: 558-570
        • Yeh T.C.
        • Ogawa W.
        • Danielsen A.G.
        • Roth R.A.
        Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase.
        J Biol Chem. 1996; 271: 2921-2928
        • Soltau M.
        • Richter D.
        • Kreienkamp H.J.
        The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42.
        Mol Cell Neurosci. 2002; 21: 575-583
        • Abbott M.A.
        • Wells D.G.
        • Fallon J.R.
        The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses.
        J Neurosci. 1999; 19: 7300-7308
        • Lannert H.
        • Hoyer S.
        Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats.
        Behav Neurosci. 1998; 112: 1199-1208
        • Ernst M.
        • Cohen R.M.
        • Liebenauer L.L.
        • Jons P.H.
        • Zametkin A.J.
        Cerebral glucose metabolism in adolescent girls with attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 1399-1406
        • Russell V.A.
        • Oades R.D.
        • Tannock R.
        • Killeen P.R.
        • Auerbach J.G.
        • Johansen E.B.
        • Sagvolden T.
        Response variability in attention-deficit/hyperactivity disorder: A neuronal and glial energetics hypothesis.
        Behav Brain Funct. 2006; 2: 30
        • Todd R.D.
        • Botteron K.N.
        Is attention-deficit/hyperactivity disorder an energy deficiency syndrome?.
        Biol Psychiatry. 2001; 50: 151-158
        • Ouchi Y.
        • Kubota Y.
        • Kuramasu A.
        • Watanabe T.
        • Ito C.
        Gene expression profiling in whole cerebral cortices of phencyclidine- or methamphetamine-treated rats.
        Brain Res Mol Brain Res. 2005; 140: 142-149
        • Rosenberg P.S.
        • Che A.
        • Chen B.E.
        Multiple hypothesis testing strategies for genetic case-control association studies.
        Stat Med. 2006; 25: 3134-3149
        • Rice T.K.
        • Schork N.J.
        • Rao D.C.
        Methods for handling multiple testing.
        Adv Genet. 2008; 60: 293-308