Advertisement

SLITRK1 Binds 14-3-3 and Regulates Neurite Outgrowth in a Phosphorylation-Dependent Manner

  • Yuji Kajiwara
    Affiliations
    Department of Neuroscience, Mount Sinai School of Medicine, New York, New York

    Department of Psychiatry, Mount Sinai School of Medicine, New York, New York

    Marine Biological Laboratory, Woods Hole, Massachusetts
    Search for articles by this author
  • Joseph D. Buxbaum
    Affiliations
    Department of Neuroscience, Mount Sinai School of Medicine, New York, New York

    Department of Psychiatry, Mount Sinai School of Medicine, New York, New York

    Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York

    Marine Biological Laboratory, Woods Hole, Massachusetts
    Search for articles by this author
  • Dorothy E. Grice
    Correspondence
    Address correspondence to Dorothy E. Grice, M.D., Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032
    Affiliations
    Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University, New York, New York

    Marine Biological Laboratory, Woods Hole, Massachusetts
    Search for articles by this author

      Background

      Rare genetic variants of SLITRK1 have been previously associated with Tourette syndrome (TS), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD) symptoms.

      Methods

      We studied SLITRK1 processing and phosphorylation. To explore potential signaling pathways of the cytoplasmic domain of SLITRK1, we made use of the yeast two-hybrid screen.

      Results

      We observed that the extracellular domain of SLITRK1 is secreted in vitro and in vivo and that this process is activated by protein kinase C and inhibited by an inhibitor of tumor necrosis factor-α converting enzyme (TACE). We observed that SLITRK1 undergoes γ-secretase cleavage to release a SLITRK1 intracellular domain (SICD). We identified an interaction between SLITRK1 and 14-3-3 proteins and observed that these proteins co-localized in cortical neuronal cultures and were coprecipitated from rat brain lysates, consistent with an interaction in vivo. We mapped the binding site to the very COOH-terminus of SLITRK1, as deletion of the last six amino acids of SLITRK1 abolished the interaction. We demonstrated phosphorylation of SLITRK1 by protein kinase A (PKA), protein kinase C (PKC), and casein kinase II (CK2) and observed that CK2 phosphorylates SLITRK1 in the 14-3-3 binding site. Mutating the CK2 phosphorylation site of SLITRK1 decreased binding to 14-3-3 and inhibited SLITRK1-mediated neurite outgrowth.

      Conclusions

      Our results shed light on the cell biology of SLITRK1, including its protein phosphorylation and potential molecular pathways for SLITRK1 function, and should contribute to further understanding the role of SLIRTK1 in developmental neuropsychiatric conditions such TS, OCD, and ADHD.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schmucker D.
        Downstream of guidance receptors: Entering the baroque period of axon guidance signaling.
        Neuron. 2003; 40: 4-6
        • Aruga J.
        • Mikoshiba K.
        Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth.
        Mol Cell Neurosci. 2003; 24: 117-129
        • Aruga J.
        • Yokota N.
        • Mikoshiba K.
        Human SLITRK: Family genes: Genomic organization and expression profiling in normal brain and brain tumor tissue.
        Gene. 2003; 315: 87-94
        • Abelson J.F.
        • Kwan K.Y.
        • O'Roak B.J.
        • Baek D.Y.
        • Stillman A.A.
        • Morgan T.M.
        • et al.
        Sequence variants in SLITRK1 are associated with Tourette's syndrome.
        Science. 2005; 310: 317-320
        • Stillman A.A.
        • Krsnik Z.
        • Sun J.
        • Rasin M.R.
        • State M.W.
        • Sestan N.
        • et al.
        Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome.
        J Comp Neurol. 2009; 513: 21-37
        • Albin R.L.
        • Mink J.W.
        Recent advances in Tourette syndrome research.
        Trends Neurosci. 2006; 29: 175-182
        • Singer H.S.
        Tourette's syndrome: From behaviour to biology.
        Lancet Neurol. 2005; 4: 149-159
        • Price R.A.
        • Kidd K.K.
        • Cohen D.J.
        • Pauls D.L.
        • Leckman J.F.
        A twin study of Tourette syndrome.
        Arch Gen Psychiatry. 1985; 42: 815-820
        • Hyde T.M.
        • Aaronson B.A.
        • Randolph C.
        • Rickler K.C.
        • Weinberger D.R.
        Relationship of birth weight to the phenotypic expression of Gilles de la Tourette's syndrome in monozygotic twins.
        Neurology. 1992; 42: 652-658
        • Jimenez-Jimenez F.J.
        • Garcia-Ruiz P.J.
        Pharmacological options for the treatment of Tourette's disorder.
        Drugs. 2001; 61: 2207-2220
        • Zuchner S.
        • Cuccaro M.L.
        • Tran-Viet K.N.
        • Cope H.
        • Krishnan R.R.
        • Pericak-Vance M.A.
        • et al.
        SLITRK1 mutations in trichotillomania.
        Mol Psychiatry. 2006; 11: 887-889
        • Katayama K.
        • Yamada K.
        • Ornthanalai V.G.
        • Inoue T.
        • Ota M.
        • Murphy N.P.
        • Aruga J.
        Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.
        Mol Psychiatry. 2008; ([published online ahead of print September 16])
        • Gabuzda D.
        • Busciglio J.
        • Yankner B.A.
        Inhibition of beta-amyloid production by activation of protein kinase C.
        J Neurochem. 1993; 61: 2326-2329
        • Izumi Y.
        • Hirata M.
        • Hasuwa H.
        • Iwamoto R.
        • Umata T.
        • Miyado K.
        • et al.
        A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor.
        EMBO J. 1998; 17: 7260-7272
        • Peschon J.J.
        • Slack J.L.
        • Reddy P.
        • Stocking K.L.
        • Sunnarborg S.W.
        • Lee D.C.
        • et al.
        An essential role for ectodomain shedding in mammalian development.
        Science. 1998; 282: 1281-1284
        • Merlos-Suarez A.
        • Ruiz-Paz S.
        • Baselga J.
        • Arribas J.
        Metalloprotease-dependent protransforming growth factor-alpha ectodomain shedding in the absence of tumor necrosis factor-alpha-converting enzyme.
        J Biol Chem. 2001; 276: 48510-48517
        • Dwek R.A.
        • Butters T.D.
        • Platt F.M.
        • Zitzmann N.
        Targeting glycosylation as a therapeutic approach.
        Nat Rev Drug Discov. 2002; 1: 65-75
        • Fortini M.E.
        Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling.
        Nat Rev. 2002; 3: 673-684
        • Marambaud P.
        • Wen P.H.
        • Dutt A.
        • Shioi J.
        • Takashima A.
        • Siman R.
        • et al.
        A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations.
        Cell. 2003; 114: 635-645
        • Kimberly W.T.
        • Zheng J.B.
        • Guenette S.Y.
        • Selkoe D.J.
        The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner.
        J Biol Chem. 2001; 276: 40288-40292
        • Artavanis-Tsakonas S.
        • Rand M.D.
        • Lake R.J.
        Notch signaling: Cell fate control and signal integration in development.
        Science. 1999; 284: 770-776
        • Edbauer D.
        • Willem M.
        • Lammich S.
        • Steiner H.
        • Haass C.
        Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD).
        J Biol Chem. 2002; 277: 13389-13393
        • Petty H.R.
        Overview of the physical state of proteins within cells.
        Curr Protoc Protein Sci. 2003; (Chapter 1:Unit1.5)
        • Okamoto T.
        • Schwab R.B.
        • Scherer P.E.
        • Lisanti M.P.
        Analysis of the association of proteins with membranes.
        Curr Protoc Protein Sci. 2001; (Chapter 5:Unit 5.4)
        • Coblitz B.
        • Wu M.
        • Shikano S.
        • Li M.
        C-terminal binding: An expanded repertoire and function of 14-3-3 proteins.
        FEBS Lett. 2006; 580: 1531-1535
        • de Castro E.
        • Sigrist C.J.
        • Gattiker A.
        • Bulliard V.
        • Langendijk-Genevaux P.S.
        • Gasteiger E.
        • et al.
        ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins.
        Nucleic Acids Res. 2006; 34: W362-W365
        • Blom N.
        • Gammeltoft S.
        • Brunak S.
        Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.
        J Mol Biol. 1999; 294: 1351-1362
        • Meggio F.
        • Pinna L.A.
        One thousand and one substrates of protein kinase CK2?.
        FASEB J. 2003; 17: 349-368
        • Ohtsubo K.
        • Marth J.D.
        Glycosylation in cellular mechanisms of health and disease.
        Cell. 2006; 126: 855-867
        • Selkoe D.
        • Kopan R.
        Notch and presenilin: Regulated intramembrane proteolysis links development and degeneration.
        Annu Rev Neurosci. 2003; 26: 565-597
        • Ebinu J.O.
        • Yankner B.A.
        A RIP tide in neuronal signal transduction.
        Neuron. 2002; 34: 499-502
        • Wolfe M.S.
        • Kopan R.
        Intramembrane proteolysis: Theme and variations.
        Science. 2004; 305: 1119-1123
        • Buxbaum J.D.
        • Georgieva L.
        • Young J.J.
        • Plescia C.
        • Kajiwara Y.
        • Jiang Y.
        • et al.
        Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene.
        Mol Psychiatry. 2008; 13: 162-172
        • Kajiwara Y.
        • Akram A.
        • Katsel P.
        • Haroutunian V.
        • Schmeidler J.
        • Beecham G.
        • et al.
        FE65 binds Teashirt, inhibiting expression of the primate-Specific caspase-4.
        PLoS ONE. 2009; 4: e5071
        • Berg D.
        • Holzmann C.
        • Riess O.
        14-3-3 proteins in the nervous system.
        Nat Rev Neurosci. 2003; 4: 752-762
        • Bridges D.
        • Moorhead G.B.
        14-3-3 proteins: A number of functions for a numbered protein.
        Sci STKE. 2005; 296: re10
        • Middleton F.A.
        • Peng L.
        • Lewis D.A.
        • Levitt P.
        • Mirnics K.
        Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2005; 30: 974-983
        • Toyo-oka K.
        • Shionoya A.
        • Gambello M.J.
        • Cardoso C.
        • Leventer R.
        • Ward H.L.
        • et al.
        14-3-3Epsilon is important for neuronal migration by binding to Nudel: A molecular explanation for Miller-Dieker syndrome.
        Nat Genet. 2003; 34: 274-285
        • Toyooka K.
        • Muratake T.
        • Tanaka T.
        • Igarashi S.
        • Watanabe H.
        • Takeuchi H.
        • et al.
        14-3-3 protein eta chain gene (YWHAH) polymorphism and its genetic association with schizophrenia.
        Am J Med Genet. 1999; 88: 164-167
        • Aitken A.
        14-3-3 proteins: A historic overview.
        Semin Cancer Biol. 2006; 16: 162-172
        • Dougherty M.K.
        • Morrison D.K.
        Unlocking the code of 14-3-3.
        J Cell Sci. 2004; 117: 1875-1884
        • van Hemert M.J.
        • Steensma H.Y.
        • van Heusden G.P.
        14-3-3 proteins: Key regulators of cell division, signalling and apoptosis.
        Bioessays. 2001; 23: 936-946
        • Fu H.
        • Subramanian R.R.
        • Masters S.C.
        14-3-3 Proteins: Structure, function, and regulation.
        Annu Rev Pharmacol Toxicol. 2000; 40: 617-647
        • Nufer O.
        • Hauri H.P.
        ER export: Call 14-3-3.
        Curr Biol. 2003; 13: R391-R393
        • Shikano S.
        • Coblitz B.
        • Wu M.
        • Li M.
        14-3-3 proteins: Regulation of endoplasmic reticulum localization and surface expression of membrane proteins.
        Trends Cell Biol. 2006; 16: 370-375
        • Mrowiec T.
        • Schwappach B.
        14-3-3 proteins in membrane protein transport.
        Biol Chem. 2006; 387: 1227-1236
        • O'Kelly I.
        • Butler M.H.
        • Zilberberg N.
        • Goldstein S.A.
        Forward transport.
        Cell. 2002; 111: 577-588
        • Yaffe M.B.
        • Rittinger K.
        • Volinia S.
        • Caron P.R.
        • Aitken A.
        • Leffers H.
        • et al.
        The structural basis for 14-3-3: Phosphopeptide binding specificity.
        Cell. 1997; 91: 961-971
        • Ganguly S.
        • Weller J.L.
        • Ho A.
        • Chemineau P.
        • Malpaux B.
        • Klein D.C.
        Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205.
        Proc Natl Acad Sci U S A. 2005; 102: 1222-1227
      1. Genome scan for Tourette disorder in affected-sibling-pair and multigenerational families.
        Am J Hum Genet. 2007; 80: 265-272
        • Simonic I.
        • Nyholt D.R.
        • Gericke G.S.
        • Gordon D.
        • Matsumoto N.
        • Ledbetter D.H.
        • et al.
        Further evidence for linkage of Gilles de la Tourette syndrome (GTS) susceptibility loci on chromosomes 2p11, 8q22 and 11q23-24 in South African Afrikaners.
        Am J Med Genet. 2001; 105: 163-167
        • Chung H.J.
        • Huang Y.H.
        • Lau L.F.
        • Huganir R.L.
        Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand.
        J Neurosci. 2004; 24: 10248-10259