Advertisement

Ventro-Striatal Reductions Underpin Symptoms of Hyperactivity and Impulsivity in Attention-Deficit/Hyperactivity Disorder

      Background

      Models of attention-deficit/hyperactivity disorder (ADHD) classically emphasize the relevance of executive processes and, recently, reward circuits. The neural bases of reward processes have barely been explored in relation to this disorder, in contrast to extensive neuroimaging studies that examine executive functions in patients with ADHD. To our knowledge, no previous studies have analyzed the volume of the ventral striatum, a key region for reward processes in ADHD children.

      Methods

      We used a manual region-of-interest approach to examine whether there were volumetric differences in the ventral striatum of ADHD children. Forty-two children/adolescents with ADHD (ages 6–18), and 42 healthy control subjects matched on age, gender, and handedness were selected for the study.

      Results

      The ADHD children presented significant reductions in both right and left ventro-striatal volumes (t = 3.290, p = .001; and t = 3.486, p = .001, respectively). In addition, we found that the volume of the right ventral striatum negatively correlated with maternal ratings of hyperactivity/impulsivity (r = −.503, p = .003).

      Conclusions

      Our study provides neuroanatomical evidence of alterations in the ventral striatum of ADHD children. These findings coincide with previous explicative models as well as with recent reports in behavioral and functional neuroimaging studies. Furthermore, the negative correlations we observed strongly uphold the relation between the ventral striatum and symptoms of hyperactivity/impulsivity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revised.
        American Psychiatric Association, Washington, DC2000
        • Solanto M.V.
        Neuropharmacological basis of stimulant drug action in attention deficit disorder with hyperactivity: A review and synthesis.
        Psychol Bull. 1984; 95: 387-409
        • Barkley R.A.
        Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD.
        Psychol Bull. 1997; 121: 65-94
        • Giedd J.N.
        • Blumenthal J.
        • Molloy E.
        • Castellanos F.X.
        Brain imaging of attention deficit/hyperactivity disorder.
        Ann N Y Acad Sci. 2001; 931: 33-49
        • Valera E.M.
        • Faraone S.V.
        • Murray K.E.
        • Seidman L.J.
        Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2007; 61: 1361-1369
        • Castellanos F.X.
        • Sonuga-Barke E.J.
        • Milham M.P.
        • Tannock R.
        Characterizing cognition in ADHD: Beyond executive dysfunction.
        Trends Cogn Sci. 2006; 10: 117-123
        • Sagvolden T.
        • Johansen E.B.
        • Aase H.
        • Russell V.A.
        A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes.
        Behav Brain Sci. 2005; 28 (discussion: 419–368): 397-419
        • Sonuga-Barke E.J.
        Psychological heterogeneity in AD/HD—A dual pathway model of behaviour and cognition.
        Behav Brain Res. 2002; 130: 29-36
        • Sonuga-Barke E.J.
        The dual pathway model of AD/HD: An elaboration of neuro-developmental characteristics.
        Neurosci Biobehav Rev. 2003; 27: 593-604
        • Luman M.
        • Oosterlaan J.
        • Sergeant J.A.
        The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal.
        Clin Psychol Rev. 2005; 25: 183-213
        • Tripp G.
        • Alsop B.
        Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder.
        J Clin Child Psychol. 1999; 28: 366-375
        • Solanto M.V.
        • Abikoff H.
        • Sonuga-Barke E.
        • Schachar R.
        • Logan G.D.
        • Wigal T.
        • et al.
        The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: A supplement to the NIMH multimodal treatment study of AD/HD.
        J Abnorm Child Psychol. 2001; 29: 215-228
        • Kuntsi J.
        • Oosterlaan J.
        • Stevenson J.
        Psychological mechanisms in hyperactivity.
        J Child Psychol Psychiatry. 2001; 42: 199-210
        • Barkley R.A.
        • Edwards G.
        • Laneri M.
        • Fletcher K.
        • Metevia L.
        Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD).
        J Abnorm Child Psychol. 2001; 29: 541-556
        • Sonuga-Barke E.J.
        • Taylor E.
        • Sembi S.
        • Smith J.
        Hyperactivity and delay aversion—I.
        J Child Psychol Psychiatry. 1992; 33: 387-398
        • Antrop I.
        • Stock P.
        • Verte S.
        • Wiersema J.R.
        • Baeyens D.
        • Roeyers H.
        ADHD and delay aversion: The influence of non-temporal stimulation on choice for delayed rewards.
        J Child Psychol Psychiatry. 2006; 47: 1152-1158
        • Schweitzer J.B.
        • Sulzer-Azaroff B.
        Self-control in boys with attention deficit hyperactivity disorder: Effects of added stimulation and time.
        J Child Psychol Psychiatry. 1995; 36: 671-686
        • Russell V.A.
        Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder—the spontaneously hypertensive rat.
        Neurosci Biobehav Rev. 2003; 27: 671-682
        • Johansen E.B.
        • Aase H.
        • Meyer A.
        • Sagvolden T.
        Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes.
        Behav Brain Res. 2002; 130: 37-45
        • Carboni E.
        • Silvagni A.
        • Valentini V.
        • Di Chiara G.
        Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats.
        Neurosci Biobehav Rev. 2003; 27: 653-659
        • Viggiano D.
        • Vallone D.
        • Sadile A.
        Dysfunctions in dopamine systems and ADHD: Evidence from animals and modeling.
        Neural Plast. 2004; 11: 97-114
        • Sonuga-Barke E.J.
        • Taylor E.
        The effect of delay on hyperactive and non-hyperactive children's response times: A research note.
        J Child Psychol Psychiatry. 1992; 33: 1091-1096
        • Antrop I.
        • Roeyers H.
        • Van Oost P.
        • Buysse A.
        Stimulation seeking and hyperactivity in children with ADHD.
        J Child Psychol Psychiatry. 2000; 41: 225-231
        • Antrop I.
        • Buysse A.
        • Roeyers H.
        • Van Oost P.
        Stimulation seeking and hyperactive behavior in children with ADHD: A re-analysis.
        Percept Mot Skills. 2002; 95: 71-90
        • Cardinal R.N.
        • Pennicott D.R.
        • Sugathapala C.L.
        • Robbins T.W.
        • Everitt B.J.
        Impulsive choice induced in rats by lesions of the nucleus accumbens core.
        Science. 2001; 292: 2499-2501
        • Cardinal R.N.
        • Howes N.J.
        Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats.
        BMC Neurosci. 2005; 6: 37
        • Christakou A.
        • Robbins T.W.
        • Everitt B.J.
        Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: Implications for corticostriatal circuit function.
        J Neurosci. 2004; 24: 773-780
        • Scheres A.
        • Milham M.P.
        • Knutson B.
        • Castellanos F.X.
        Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2007; 61: 720-724
        • Scheres A.
        • Lee A.
        • Sumiya M.
        Temporal reward discounting and ADHD: Task and symptom specific effects.
        J Neural Transm. 2008; 115: 221-226
        • Strohle A.
        • Stoy M.
        • Wrase J.
        • Schwarzer S.
        • Schlagenhauf F.
        • Huss M.
        • et al.
        Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder.
        Neuroimage. 2007; 39: 966-972
        • Plichta M.M.
        • Vasic N.
        • Wolf C.
        • Lesch K.P.
        • Brummer D.
        • Jacob C.
        • et al.
        Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2008; 65: 7-14
        • Andersen S.L.
        • Napierata L.
        • Brenhouse H.C.
        • Sonntag K.C.
        Juvenile methylphenidate modulates reward-related behaviors and cerebral blood flow by decreasing cortical D3 receptors.
        Eur J Neurosci. 2008; 27: 2962-2972
        • Knutson B.
        • Bjork J.M.
        • Fong G.W.
        • Hommer D.
        • Mattay V.S.
        • Weinberger D.R.
        Amphetamine modulates human incentive processing.
        Neuron. 2004; 43: 261-269
        • Kim Y.
        • Teylan M.A.
        • Baron M.
        • Sands A.
        • Nairn A.C.
        • Greengard P.
        Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens.
        Proc Natl Acad Sci U S A. 2009; 106: 2915-2920
        • Leo D.
        • Adriani W.
        • Cavaliere C.
        • Cirillo G.
        • Marco E.M.
        • Romano E.
        • et al.
        Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: Implications for impulsive behavior and neuronal morphology.
        Genes Brain Behav. 2009; 8: 356-368
        • Gunduz H.
        • Wu H.
        • Ashtari M.
        • Bogerts B.
        • Crandall D.
        • Robinson D.G.
        • et al.
        Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects.
        Biol Psychiatry. 2002; 51: 801-808
        • Nacewicz B.M.
        • Dalton K.M.
        • Johnstone T.
        • Long M.T.
        • McAuliff E.M.
        • Oakes T.R.
        • et al.
        Amygdala volume and nonverbal social impairment in adolescent and adult males with autism.
        Arch Gen Psychiatry. 2006; 63: 1417-1428
        • Heal D.J.
        • Smith S.L.
        • Kulkarni R.S.
        • Rowley H.L.
        New perspectives from microdialysis studies in freely-moving, spontaneously hypertensive rats on the pharmacology of drugs for the treatment of ADHD.
        Pharmacol Biochem Behav. 2008; 90: 184-197
        • Qiu A.
        • Crocetti D.
        • Adler M.
        • Mahone E.M.
        • Denckla M.B.
        • Miller M.I.
        • et al.
        Basal ganglia volume and shape in children with attention deficit hyperactivity disorder.
        Am J Psychiatry. 2009; 166: 74-82
        • Seidman L.J.
        • Valera E.M.
        • Makris N.
        • Monuteaux M.C.
        • Boriel D.L.
        • Kelkar K.
        • et al.
        Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging.
        Biol Psychiatry. 2006; 60: 1071-1080
        • Shaw P.
        • Eckstrand K.
        • Sharp W.
        • Blumenthal J.
        • Lerch J.P.
        • Greenstein D.
        • et al.
        Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation.
        Proc Natl Acad Sci U S A. 2007; 104: 19649-19654
        • Schultz W.
        • Dayan P.
        • Montague P.R.
        A neural substrate of prediction and reward.
        Science. 1997; 275: 1593-1599
        • Schultz W.
        Reward signaling by dopamine neurons.
        Neuroscientist. 2001; 7: 293-302
        • Schultz W.
        Predictive reward signal of dopamine neurons.
        J Neurophysiol. 1998; 80: 1-27
        • Johansen E.B.
        • Killeen P.R.
        • Russell V.A.
        • Tripp G.
        • Wickens J.R.
        • Tannock R.
        • et al.
        Origins of altered reinforcement effects in ADHD.
        Behav Brain Funct. 2009; 5: 7
        • Williams J.
        • Dayan P.
        Dopamine, learning, and impulsivity: A biological account of attention-deficit/hyperactivity disorder.
        J Child Adolesc Psychopharmacol. 2005; 15 (discussion: 157–169): 160-179
        • Tripp G.
        • Wickens J.R.
        Research review: Dopamine transfer deficit: A neurobiological theory of altered reinforcement mechanisms in ADHD.
        J Child Psych Psychiatry. 2008; 49: 691-704