Characterization of QKI Gene Expression, Genetics, and Epigenetics in Suicide Victims with Major Depressive Disorder


      A number of studies have suggested deficits in myelination and glial gene expression in different psychiatric disorders. We examined the brain expression and genetic/epigenetic regulation of QKI, an oligodendrocyte-specific RNA binding protein important for cell development and myelination.


      The microarray-based expression of QKI was evaluated in cortical and subcortical brain regions from suicide victims with a diagnosis of major depression (n = 16) and control subjects (n = 13). These findings were also assessed with a real-time (quantitative polymerase chain reaction [qPCR]) approach, with QKI protein levels evaluated through immunoblotting. Identification of a QKI promoter sequence was then used to examine genetic and epigenetic variation at the QKI locus.


      The messenger RNA (mRNA) levels of multiple transcripts of QKI were evaluated on Affymetrix microarrays, revealing significant reductions in 11 cortical regions and the hippocampus and amygdala of suicide victims compared with control subjects. Microarray findings were confirmed by qPCR, and reduced expression of QKI protein was identified in orbitofrontal cortex. Analysis of promoter variation and methylation state in a subset of individuals did not identify differences at the genetic or epigenetic level between depressed suicide victims and control subjects.


      The observation of consistent reductions in multiple isoforms of QKI mRNA in depressed suicide victims supports the growing body of evidence for a role of myelination-related deficits in the etiology of psychiatric disorders. A specific role of QKI in this process is implied by its reduced expression and known interactions with genes involved in oligodendrocyte determination; however, QKI gene variation responsible for these changes remains to be identified.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Blair-West G.W.
        • Mellsop G.W.
        • Eyeson-Annan M.L.
        Down-rating lifetime suicide risk in major depression.
        Acta Psychiatr Scand. 1997; 95: 259-263
      1. Carballo JJ, Akamnonu CP, Oquendo MA: (2998): Neurobiology of suicidal behavior. An integration of biological and clinical findings. Arch Suicide Res 12:93–110.

        • Monkul E.S.
        • Hatch J.P.
        • Nicoletti M.A.
        • Spence S.
        • Brambilla P.
        • Lacerda A.L.
        • et al.
        Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder.
        Mol Psychiatry. 2007; 12: 360-366
        • Brezo J.
        • Klempan T.
        • Turecki G.
        The genetics of suicide: A critical review of molecular studies.
        in: Oquendo M. Mann J.J. Suicidal Behavior: A Developmental Perspective. W. B. Saunders, Philadelphia2008: 179-203
        • Aberg K.
        • Saetre P.
        • Lindholm E.
        • Ekholm B.
        • Pettersson U.
        • Adolfsson R.
        • et al.
        Human QKI, a new candidate gene for schizophrenia involved in myelination.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141: 84-90
        • Aston C.
        • Jiang L.
        • Sokolov B.P.
        Microarray analysis of postmortem temporal cortex from patients with schizophrenia.
        J Neurosci Res. 2004; 77: 858-866
        • Haroutunian V.
        • Katsel P.
        • Dracheva S.
        • Davis K.L.
        The human homolog of the QKI gene affected in the severe dysmyelination “Quaking” mouse phenotype: Downregulated in multiple brain regions in schizophrenia.
        Am J Psychiatry. 2006; 163: 1834-1837
        • Lindholm E.
        • Ekholm B.
        • Shaw S.
        • Jalonen P.
        • Johansson G.
        • Pettersson U.
        • et al.
        A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees.
        Am J Hum Genet. 2001; 69: 96-105
        • Ebersole T.A.
        • Chen Q.
        • Justice M.J.
        • Artzt K.
        The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins.
        Nat Genet. 1996; 12: 260-265
        • Zhao L.
        • Ku L.
        • Chen Y.
        • Xia M.
        • LoPresti P.
        • Feng Y.
        QKI binds MAP1B mRNA and enhances MAP1B expression during oligodendrocyte development.
        Mol Biol Cell. 2006; 17: 4179-4186
        • Sidman R.L.
        • Dickie M.M.
        • Appel S.H.
        Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system.
        Science. 1964; 144: 309-311
        • Li Z.Z.
        • Kondo T.
        • Murata T.
        • Ebersole T.A.
        • Nishi T.
        • Tada K.
        • et al.
        Expression of Hqk encoding a KH RNA binding protein is altered in human glioma.
        Jpn J Cancer Res. 2002; 93: 167-177
        • Siomi H.
        • Matunis M.J.
        • Michael W.M.
        • Dreyfuss G.
        The pre-mRNA binding K protein contains a novel evolutionarily conserved motif.
        Nucleic Acids Res. 1993; 21: 1193-1198
        • Klempan T.A.
        • Sequeira A.
        • Canetti L.
        • Lalovic A.
        • Ernst C.
        • Ffrench-Mullen J.
        • et al.
        Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression.
        Mol Psychiatry. 2009; 14: 175-189
        • Dumais A.
        • Lesage A.D.
        • Alda M.
        • Rouleau G.
        • Dumont M.
        • Chawky N.
        • et al.
        Risk factors for suicide completion in major depression: A case-control study of impulsive and aggressive behaviors in men.
        Am J Psychiatry. 2005; 162: 2116-2124
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P).
        Biometrics Research, New York State Psychiatric Institute, New York2002
        • Shemer R.
        • Walsh A.
        • Eisenberg S.
        • Breslow J.L.
        • Razin A.
        Tissue-specific methylation patterns and expression of the human apolipoprotein AI gene.
        J Biol Chem. 1990; 265: 1010-1015
        • Suzuki M.M.
        • Bird A.
        DNA methylation landscapes: Provocative insights from epigenomics.
        Nat Rev Genet. 2008; 9: 465-476
        • Li L.C.
        • Dahiya R.
        MethPrimer: Designing primers for methylation PCRs.
        Bioinformatics. 2002; 18: 1427-1431
        • Flanagan J.M.
        • Popendikyte V.
        • Pozdniakovaite N.
        • Sobolev M.
        • Assadzadeh A.
        • Schumacher A.
        • et al.
        Intra- and interindividual epigenetic variation in human germ cells.
        Am J Hum Genet. 2006; 79: 67-84
        • Clark S.J.
        • Harrison J.
        • Paul C.L.
        • Frommer M.
        High sensitivity mapping of methylated cytosines.
        Nucleic Acids Res. 1994; 22: 2990-2997
        • Frommer M.
        • McDonald L.E.
        • Millar D.S.
        • Collis C.M.
        • Watt F.
        • Grigg G.W.
        • et al.
        A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.
        Proc Natl Acad Sci U S A. 1992; 89: 1827-1831
        • Kent W.J.
        • Sugnet C.W.
        • Furey T.S.
        • Roskin K.M.
        • Pringle T.H.
        • Zahler A.M.
        • et al.
        The human genome browser at UCSC.
        Genome Res. 2002; 12: 996-1006
        • Vadigepalli R.
        • Chakravarthula P.
        • Zak D.E.
        • Schwaber J.S.
        • Gonye G.E.
        PAINT: A promoter analysis and interaction network generation tool for gene regulatory network identification.
        Omics. 2003; 7: 235-252
        • Zhao L.
        • Tian D.
        • Xia M.
        • Macklin W.B.
        • Feng Y.
        Rescuing qkV dysmyelination by a single isoform of the selective RNA-binding protein QKI.
        J Neurosci. 2006; 26: 11278-11286
        • Wu J.I.
        • Reed R.B.
        • Grabowski P.J.
        • Artzt K.
        Function of quaking in myelination: Regulation of alternative splicing.
        Proc Natl Acad Sci U S A. 2002; 99: 4233-4238
        • Aberg K.
        • Saetre P.
        • Jareborg N.
        • Jazin E.
        Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia.
        Proc Natl Acad Sci U S A. 2006; 103: 7482-7487
        • McInnes L.A.
        • Lauriat T.L.
        RNA metabolism and dysmyelination in schizophrenia.
        Neurosci Biobehav Rev. 2006; 30: 551-561
        • Larocque D.
        • Galarneau A.
        • Liu H.N.
        • Scott M.
        • Almazan G.
        • Richard S.
        Protection of p27(K 1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation.
        Nat Neurosci. 2005; 8: 27-33
        • Aston C.
        • Jiang L.
        • Sokolov B.P.
        Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.
        Mol Psychiatry. 2005; 10: 309-322
        • Hakak Y.
        • Walker J.R.
        • Li C.
        • Wong W.H.
        • Davis K.L.
        • Buxbaum J.D.
        • et al.
        Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 4746-4751
        • Tkachev D.
        • Mimmack M.L.
        • Ryan M.M.
        • Wayland M.
        • Freeman T.
        • Jones P.B.
        • et al.
        Oligodendrocyte dysfunction in schizophrenia and bipolar disorder.
        Lancet. 2003; 362: 798-805
        • Davis K.L.
        • Stewart D.G.
        • Friedman J.I.
        • Buchsbaum M.
        • Harvey P.D.
        • Hof P.R.
        • et al.
        White matter changes in schizophrenia: Evidence for myelin-related dysfunction.
        Arch Gen Psychiatry. 2003; 60: 443-456
        • Lenze E.
        • Cross D.
        • McKeel D.
        • Neuman R.J.
        • Sheline Y.I.
        White matter hyperintensities and gray matter lesions in physically healthy depressed subjects.
        Am J Psychiatry. 1999; 156: 1602-1607
        • McDonald C.
        • Bullmore E.
        • Sham P.
        • Chitnis X.
        • Suckling J.
        • MacCabe J.
        • et al.
        Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: Computational morphometry study.
        Br J Psychiatry. 2005; 186: 369-377
        • Hamidi M.
        • Drevets W.C.
        • Price J.L.
        Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes.
        Biol Psychiatry. 2004; 55: 563-569
        • Uranova N.
        • Orlovskaya D.
        • Vikhreva O.
        • Zimina I.
        • Kolomeets N.
        • Vostrikov V.
        • et al.
        Electron microscopy of oligodendroglia in severe mental illness.
        Brain Res Bull. 2001; 55: 597-610
        • Uranova N.A.
        • Vostrikov V.M.
        • Orlovskaya D.D.
        • Rachmanova V.I.
        Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: A study from the Stanley Neuropathology Consortium.
        Schizophr Res. 2004; 67: 269-275
        • Rajkowska G.
        Cell pathology in mood disorders.
        Semin Clin Neuropsychiatr. 2002; 7: 281-292
        • Rajkowska G.
        Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells.
        Biol Psychiatry. 2000; 48: 766-777
        • Cotter D.
        • Mackay D.
        • Landau S.
        • Kerwin R.
        • Everall I.
        Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder.
        Arch Gen Psychiatry. 2001; 58: 545-553
        • Cotter D.
        • Mackay D.
        • Chana G.
        • Beasley C.
        • Landau S.
        • Everall I.P.
        Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder.
        Cereb Cortex. 2002; 12: 386-394