Advertisement
Archival Report| Volume 66, ISSUE 6, P603-613, September 15, 2009

Genetic Inactivation of Dopamine D1 but Not D2 Receptors Inhibits L-DOPA–Induced Dyskinesia and Histone Activation

  • Sanja Darmopil
    Affiliations
    Cajal Institute, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Ana B. Martín
    Affiliations
    Cajal Institute, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Irene Ruiz De Diego
    Affiliations
    Cajal Institute, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Sara Ares
    Affiliations
    Cajal Institute, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Rosario Moratalla
    Correspondence
    Address correspondence to Rosario Moratalla, Ph.D., Cajal Institute, Avenida Dr. Arce 37, 28002 Madrid, Spain
    Affiliations
    Cajal Institute, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author

      Background

      Pharmacologic studies have implicated dopamine D1-like receptors in the development of dopamine precursor molecule 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesias and associated molecular changes in hemiparkinsonian mice. However, pharmacologic agents for D1 or D2 receptors also recognize other receptor family members. Genetic inactivation of the dopamine D1 or D2 receptor was used to define the involvement of these receptor subtypes.

      Methods

      During a 3-week period of daily L-DOPA treatment (25 mg/kg), mice were examined for development of contralateral turning behavior and dyskinesias. L-DOPA-induced changes in expression of signaling molecules and other proteins in the lesioned striatum were examined immunohistochemically.

      Results

      Chronic L-DOPA treatment gradually induced rotational behavior and dyskinesia in wildtype hemiparkinsonian mice. Dyskinetic symptoms were associated with increased FosB and dynorphin expression, phosphorylation of extracellular signal-regulated kinase, and phosphoacetylation of histone 3 (H3) in the lesioned striatum. These molecular changes were restricted to striatal areas with complete dopaminergic denervation and occurred only in dynorphin-containing neurons of the direct pathway. D1 receptor inactivation abolished L-DOPA-induced dyskinesias and associated molecular changes. Inactivation of the D2 receptor had no significant effect on the behavioral or molecular response to chronic L-DOPA.

      Conclusions

      Our results demonstrate that the dopamine D1 receptor is critical for the development of L-DOPA-induced dyskinesias in mice and in the underlying molecular changes in the denervated striatum and that the D2 receptor has little or no involvement. In addition, we demonstrate that H3 phosphoacetylation is blocked by D1 receptor inactivation, suggesting that inhibitors of H3 acetylation and/or phosphorylation may be useful in preventing or reversing dyskinesia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chase T.N.
        • Oh J.D.
        • Blanchet P.J.
        Neostriatal mechanisms in Parkinson's disease.
        Neurology. 1998; 51: S30-S35
        • Corvol J.C.
        • Muriel M.P.
        • Valjent E.
        • Feger J.
        • Hanoun N.
        • Girault J.A.
        • et al.
        Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson's disease.
        J Neurosci. 2004; 24: 7007-7014
        • Pavon N.
        • Martin A.B.
        • Mendialdua A.
        • Moratalla R.
        ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice.
        Biol Psychiatry. 2006; 59: 64-74
        • Santini E.
        • Valjent E.
        • Usiello A.
        • Carta M.
        • Borgkvist A.
        • Girault J.A.
        • et al.
        Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia.
        J Neurosci. 2007; 27: 6995-7005
        • Santini E.
        • Valjent E.
        • Fisone G.
        Parkinson's disease: Levodopa-induced dyskinesia and signal transduction.
        FEBS J. 2008; 275: 1392-1399
        • St-Hilaire M.
        • Landry E.
        • Levesque D.
        • Rouillard C.
        Denervation and repeated L-DOPA induce complex regulatory changes in neurochemical phenotypes of striatal neurons: Implication of a dopamine D1-dependent mechanism.
        Neurobiol Dis. 2005; 20: 450-460
        • Westin J.E.
        • Vercammen L.
        • Strome E.M.
        • Konradi C.
        • Cenci M.A.
        Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors.
        Biol Psychiatry. 2007; 62: 800-810
        • Nutt J.G.
        Clinical pharmacology of levodopa-induced dyskinesia.
        Ann Neurol. 2000; 47: S160-S164
        • Carta A.R.
        • Lucia F.
        • Annalisa P.
        • Silvia P.
        • Nicola S.
        • Nicoletta S.
        • et al.
        Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat.
        Synapse. 2008; 62: 524-533
        • Delfino M.A.
        • Stefano A.V.
        • Ferrario J.E.
        • Taravini I.R.
        • Murer M.G.
        • Gershanik O.S.
        Behavioral sensitization to different dopamine agonists in a parkinsonian rodent model of drug-induced dyskinesias.
        Behav Brain Res. 2004; 152: 297-306
        • Ding Y.
        • Restrepo J.
        • Won L.
        • Hwang D.Y.
        • Kim K.S.
        • Kang U.J.
        Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson's disease.
        Neurobiol Dis. 2007; 27: 11-23
        • Monville C.
        • Torres E.M.
        • Dunnett S.B.
        Validation of the L-DOPA-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists.
        Brain Res Bull. 2005; 68: 16-23
        • Taylor J.L.
        • Bishop C.
        • Walker P.D.
        Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat.
        Pharmacol Biochem Behav. 2005; 81: 887-893
        • Santini E.
        • Alcacer C.
        • Cacciatore S.
        • Heiman M.
        • Herve D.
        • Greengard P.
        • et al.
        L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice.
        J Neurochem. 2009; 108: 621-633
        • Granado N.
        • Ortiz O.
        • Suarez L.M.
        • Martin E.D.
        • Cena V.
        • Solis J.M.
        • et al.
        D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-induced arc and zif268 expression in the hippocampus.
        Cereb Cortex. 2008; 18: 1-12
        • Centonze D.
        • Grande C.
        • Saulle E.
        • Martin A.B.
        • Gubellini P.
        • Pavon N.
        • et al.
        Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.
        J Neurosci. 2003; 23: 8506-8512
        • Kvernmo T.
        • Hartter S.
        • Burger E.
        A review of the receptor-binding and pharmacokinetic properties of dopamine agonists.
        Clin Ther. 2006; 28: 1065-1078
        • Tiberi M.
        • Caron M.G.
        High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype.
        J Biol Chem. 1994; 269: 27925-27931
        • Moratalla R.
        • Xu M.
        • Tonegawa S.
        • Graybiel A.M.
        Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor.
        Proc Natl Acad Sci U S A. 1996; 93: 14928-14933
        • Xu M.
        • Moratalla R.
        • Gold L.H.
        • Hiroi N.
        • Koob G.F.
        • Graybiel A.M.
        • et al.
        Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses.
        Cell. 1994; 79: 729-742
        • Kelly M.A.
        • Rubinstein M.
        • ASA S.L.
        • Zhang G.
        • Saez C.
        • et al.
        Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice.
        Neuron. 1997; 19: 103-113
        • Kelly M.A.
        • Low M.J.
        • Rubinstein M.
        • Phillips T.J.
        Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice.
        Genes Brain Behav. 2008; 7: 568-577
        • Murer M.G.
        • Dziewczapolski G.
        • Salin P.
        • Vila M.
        • Tseng K.Y.
        • Ruberg M.
        • et al.
        The indirect basal ganglia pathway in dopamine D(2) receptor-deficient mice.
        Neuroscience. 2000; 99: 643-650
        • Darmopil S.
        • Muneton-Gomez V.C.
        • de Ceballos M.L.
        • Bernson M.
        • Moratalla R.
        Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA.
        Eur J Neurosci. 2008; 27: 580-592
        • Grande C.
        • Zhu H.
        • Martin A.B.
        • Lee M.
        • Ortiz O.
        • Hiroi N.
        • et al.
        Chronic treatment with atypical neuroleptics induces striosomal FosB/DeltaFosB expression in rats.
        Biol Psychiatry. 2004; 55: 457-463
        • Rivera A.
        • Alberti I.
        • Martin A.B.
        • Narvaez J.A.
        • de la C.A.
        • Moratalla R.
        Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype.
        Eur J Neurosci. 2002; 16: 2049-2058
        • Martinez-Murillo R.
        • Blasco I.
        • Alvarez F.J.
        • Villalba R.
        • Solano M.L.
        • Montero-Caballero M.I.
        • et al.
        Distribution of enkephalin-immunoreactive nerve fibres and terminals in the region of the nucleus basalis magnocellularis of the rat: A light and electron microscopic study.
        J Neurocytol. 1988; 17: 361-376
        • Granado N.
        • Escobedo I.
        • O'Shea E.
        • Colado I.
        • Moratalla R.
        Early loss of dopaminergic terminals in striosomes after MDMA administration to mice.
        Synapse. 2008; 62: 80-84
        • Lundblad M.
        • Picconi B.
        • Lindgren H.
        • Cenci M.A.
        A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function.
        Neurobiol Dis. 2004; 16: 110-123
        • Nicholas A.P.
        • Lubin F.D.
        • Hallett P.J.
        • Vattem P.
        • Ravenscroft P.
        • Bezard E.
        • et al.
        Striatal histone modifications in models of levodopa-induced dyskinesia.
        J Neurochem. 2008; 106: 486-494
        • van Kampen J.M.
        • Stoessl A.J.
        Effects of oligonucleotide antisense to dopamine D3 receptor mRNA in a rodent model of behavioural sensitization to levodopa.
        Neuroscience. 2003; 116: 307-314
        • Blanchet P.J.
        • Gomez-Mancilla B.
        • Bedard P.J.
        DOPA-induced “peak dose” dyskinesia: Clues implicating D2 receptor-mediated mechanisms using dopaminergic agonists in MPTP monkeys.
        J Neural Transm Supplementum. 1995; 45: 103-112
        • Calon F.
        • Morissette M.
        • Goulet M.
        • Grondin R.
        • Blanchet P.J.
        • Bedard P.J.
        • et al.
        Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated monkeys: Effects on basal ganglia GABA(A)/benzodiazepine receptor complex and GABA content.
        Neurochem Int. 1999; 35: 81-91
        • Goulet M.
        • Grondin R.
        • Blanchet P.J.
        • Bedard P.J.
        • Di P.T.
        Dyskinesias and tolerance induced by chronic treatment with a D1 agonist administered in pulsatile or continuous mode do not correlate with changes of putaminal D1 receptors in drug-naive MPTP monkeys.
        Brain Res. 1996; 719: 129-137
        • Rascol O.
        • Nutt J.G.
        • Blin O.
        • Goetz C.G.
        • Trugman J.M.
        • Soubrouillard C.
        • et al.
        Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson's disease.
        Arch Neurol. 2001; 58: 249-254
        • Sunahara R.K.
        • Guan H.C.
        • O'Dowd B.F.
        • Seeman P.
        • Laurier L.G.
        • et al.
        Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.
        Nature. 1991; 350: 614-619
        • Martelle J.L.
        • Nader M.A.
        A review of the discovery, pharmacological characterization, and behavioral effects of the dopamine D2-like receptor antagonist eticlopride.
        CNS Neurosci Ther. 2008; 14: 248-262
        • Millan M.J.
        • Seguin L.
        • Gobert A.
        • Cussac D.
        • Brocco M.
        The role of dopamine D3 compared with D2 receptors in the control of locomotor activity: A combined behavioural and neurochemical analysis with novel, selective antagonists in rats.
        Psychopharmacology. 2004; 174: 341-357
        • Newman-Tancredi A.
        • Cussac D.
        • Audinot V.
        • Nicolas J.P.
        • De C.F.
        • Boutin J.A.
        • et al.
        Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor.
        J Pharmacol Exp Ther. 2002; 303: 805-814
        • Bordet R.
        • Ridray S.
        • Carboni S.
        • Diaz J.
        • Sokoloff P.
        • Schwartz J.C.
        Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa.
        Proc Natl Acad Sci U S A. 1997; 94: 3363-3367
        • Lundblad M.
        • Usiello A.
        • Carta M.
        • Hakansson K.
        • Fisone G.
        • Cenci M.A.
        Pharmacological validation of a mouse model of L-DOPA-induced dyskinesia.
        Exp Neurol. 2005; 194: 66-75
        • Pearce R.K.
        • Banerji T.
        • Jenner P.
        • Marsden C.D.
        De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-DOPA in the MPTP-treated marmoset.
        Mov Disord. 1998; 13: 234-241
        • Kelly M.A.
        • Rubinstein M.
        • Phillips T.J.
        • Lessov C.N.
        • Burkhart-Kasch S.
        • Zhang G.
        • et al.
        Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations.
        J Neurosci. 1998; 18: 3470-3479
        • Andersson M.
        • Hilbertson A.
        • Cenci M.A.
        Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease.
        Neurobiol Dis. 1999; 6: 461-474
        • Piccini P.
        • Weeks R.A.
        • Brooks D.J.
        Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias.
        Ann Neurol. 1997; 42: 720-726
        • Brotchie J.M.
        • Henry B.
        • Hille C.J.
        • Crossman A.R.
        Opioid peptide precursor expression in animal models of dystonia secondary to dopamine-replacement therapy in Parkinson's disease.
        Adv Neurol. 1998; 78: 41-52
        • Steiner H.
        • Gerfen C.R.
        Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior.
        Exp Brain Res. 1998; 123: 60-76
        • Shen H.Y.
        • Kalda A.
        • Yu L.
        • Ferrara J.
        • Zhu J.
        • Chen J.F.
        Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice.
        Neuroscience. 2008; 157: 644-655
        • Tsankova N.
        • Renthal W.
        • Kumar A.
        • Nestler E.J.
        Epigenetic regulation in psychiatric disorders.
        Nat Rev Neurosci. 2007; 8: 355-367
        • Putterman D.B.
        • Munhall A.C.
        • Kozell L.B.
        • Belknap J.K.
        • Johnson S.W.
        Evaluation of levodopa dose and magnitude of dopamine depletion as risk factors for levodopa-induced dyskinesia in a rat model of Parkinson's disease.
        J Pharmacol Exp Ther. 2007; 323: 277-284
        • Carlsson T.
        • Carta M.
        • Munoz A.
        • Mattsson B.
        • Winkler C.
        • Kirik D.
        • et al.
        Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration.
        Brain. 2008; 132: 319-335
        • Carta M.
        • Carlsson T.
        • Kirik D.
        • Bjorklund A.
        Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats.
        Brain. 2007; 130: 1819-1833
        • Carta M.
        • Carlsson T.
        • Munoz A.
        • Kirik D.
        • Bjorklund A.
        Serotonin-dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias.
        Prog Brain Res. 2008; 172: 465-478
        • Jenner P.
        Molecular mechanisms of L-DOPA-induced dyskinesia.
        Nat Rev Neurosci. 2008; 9: 665-677
        • Nadjar A.
        • Gerfen C.R.
        • Bezard E.
        Priming for L-DOPA-induced dyskinesia in Parkinson's disease: A feature inherent to the treatment or the disease?.
        Prog Neurobiol. 2009; 87: 1-9
        • Hiroi N.
        • Graybiel A.M.
        Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum.
        J Comp Neurol. 1996; 374: 70-83