Advertisement

Mineralocorticoid Receptor Overexpression in Basolateral Amygdala Reduces Corticosterone Secretion and Anxiety

      Background

      The amygdala plays a critical role in the development of anxiety and the regulation of stress hormone secretion. Reciprocally, stress and stress hormones can induce amygdala hypertrophy, a phenomenon related to enhanced anxiety. As such, modulating amygdaloid function can potentially reduce maladaptive features of the stress response. The amygdala contains two kind of receptor for corticosteroids, the adrenal steroid hormone released during stress: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). Although high-affinity MRs are heavily occupied during basal conditions, low-affinity GRs are heavily occupied only by stress levels of glucocorticoids. Prolonged and heavy occupancy of GRs tends to mediate the deleterious effects of glucocorticoids on neurons, whereas MR occupancy tends to mediate beneficial effects.

      Methods

      In this report, we overexpress MR in neurons of adult rat basolateral amygdala, with a herpes simplex viral vector coding for two copies of MR.

      Results

      Such overexpression reduced anxiety, as measured on an elevated plus-maze, and reduced the magnitude of glucocorticoid secretion after an acute stressor.

      Conclusions

      Thus, increasing MR signaling in basolateral amygdala could be valuable in management of stress disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McEwen B.S.
        Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators.
        Eur J Pharmacol. 2008; 583: 174-185
        • Adamec R.E.
        • Burton P.
        • Shallow T.
        • Budgell J.
        Unilateral block of NMDA receptors in the amygdala prevents predator stress-induced lasting increases in anxiety-like behavior and unconditioned startle—effective hemisphere depends on the behavior.
        Physiol Behav. 1999; 65: 739-751
        • Mitra R.
        • Sapolsky R.M.
        Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy.
        Proc Natl Acad Sci U S A. 2008; I105: 5573-5578
        • Shepard J.
        • Barron K.
        • Myers D.
        Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary-adrenal responses to behavioral stress.
        Brain Res. 2003; 963: 203-213
        • Shepard J.
        • Barron K.
        • Myers D.
        Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior.
        Brain Res. 2000; 861: 95
        • Myers B.
        • Greenwood-Van M.
        Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity.
        Am J Physiol Gastrointest Liver Physiol. 2007; 292: 9
        • de Kloet E.R.
        • Oitzl M.S.
        • Joels M.
        Functional implications of brain corticosteroid receptor diversity.
        Cell Mol Neurobiol. 1993; 13: 433-455
        • Conrad C.D.
        The relationship between acute glucocorticoid levels and hippocampal function depends upon task aversiveness and memory processing stage.
        Nonlinearity Biol Toxicol Med. 2005; 3: 57-78
        • Yau J.L.
        • Noble J.
        • Seckl J.R.
        Continuous blockade of brain mineralocorticoid receptors impairs spatial learning in rats.
        Neurosci Lett. 1999; 277: 45-48
        • Lai M.
        • Horsburgh K.
        • Bae S.E.
        • Carter R.N.
        • Stenvers D.J.
        • Fowler J.H.
        • et al.
        Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia.
        Eur J Neurosci. 2007; 25: 1832-1842
        • Oitzl M.S.
        • de Kloet E.R.
        Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning.
        Behav Neurosci. 1992; 106: 62-71
        • Conrad C.D.
        • Lupien S.J.
        • McEwen B.S.
        Support for a bimodal role for Type II adrenal steroid receptors in spatial memory.
        Neurobiol Learn Mem. 1999; 72: 39-46
        • Pryce C.R.
        Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter-species and intra-species differences.
        Brain Res Rev. 2008; 57: 596-605
        • Patel P.D.
        • Lopez J.F.
        • Lyons D.M.
        • Burke S.
        • Wallace M.
        • Schatzberg A.F.
        Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain.
        J Psychiatr Res. 2000; 34: 383-392
        • Ferguson D.
        • Sapolsky R.
        Mineralocorticoid receptor overexpression differentially modulates specific phases of spatial and nonspatial memory.
        J Neurosci. 2007; 27: 8046-8052
        • Ferguson D.
        • Sapolsky R.
        Overexpression of mineralocorticoid and transdominant glucocorticoid receptor blocks the impairing effects of glucocorticoids on memory.
        Hippocampus. 2008; 18: 1103-1111
        • Mechiel Korte S.
        • De Boer S.F.
        A robust animal model of state anxiety: Fear-potentiated behaviour in the elevated plus-maze.
        Eur J Pharmacol. 2003; 463: 163-175
        • APA
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. American Psychiatric Association, Washington, DC1994
        • Shelton C.I.
        Diagnosis and management of anxiety disorders.
        J Am Osteopath Assoc. 2004; 104: S2-S5
        • Shearer S.L.
        Recent advances in the understanding and treatment of anxiety disorders.
        Prim Care. 2007; 34 (v–vi.): 475-504
        • WHO
        The ICD-10 Classification of Mental and Behavioral Disorders-Diagnostic Criteria for Research.
        World Health Organization, Geneva1993
        • LeDoux J.
        The emotional brain, fear, and the amygdala.
        Cell Mol Neurobiol. 2003; 23: 727-738
        • Quirk G.J.
        Fear research: Implications for anxiety disorders.
        Bol Asoc Med P R. 1998; 90: 27-29
        • Miller L.A.
        • Taber K.H.
        • Gabbard G.O.
        • Hurley R.A.
        Neural underpinnings of fear and its modulation: Implications for anxiety disorders.
        J Neuropsychiatr Clin Neurosci. 2005; 17: 1-6
        • Sajdyk T.J.
        • Shekhar A.
        Excitatory amino acid receptors in the basolateral amygdala regulate anxiety responses in the social interaction test.
        Brain Res. 1997; 764: 262-264
        • Rainnie D.G.
        • Bergeron R.
        • Sajdyk T.J.
        • Patil M.
        • Gehlert D.R.
        • Shekhar A.
        Corticotropin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders.
        J Neurosci. 2004; 24: 3471-3479
        • Kalin N.H.
        • Shelton S.E.
        • Davidson R.J.
        The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate.
        J Neurosci. 2004; 24: 5506-5515
        • Stein M.B.
        • Simmons A.N.
        • Feinstein J.S.
        • Paulus M.P.
        Increased amygdala and insula activation during emotion processing in anxiety-prone subjects.
        Am J Psychiatry. 2007; 164: 318-327
        • Bishop S.J.
        • Duncan J.
        • Lawrence A.D.
        State anxiety modulation of the amygdala response to unattended threat-related stimuli.
        J Neurosci. 2004; 24: 10364-10368
        • Anand A.
        • Shekhar A.
        Brain imaging studies in mood and anxiety disorders: Special emphasis on the amygdala.
        Ann N Y Acad Sci. 2003; 985: 370-388
        • Amaral D.G.
        • Corbett B.A.
        The amygdala, autism and anxiety.
        Novartis Found Symp. 2003; 251 (discussion:187–197, 281–297.): 177-187
        • Somerville L.H.
        • Kim H.
        • Johnstone T.
        • Alexander A.L.
        • Whalen P.J.
        Human amygdala responses during presentation of happy and neutral faces: Correlations with state anxiety.
        Biol Psychiatry. 2004; 55: 897-903
        • Phan K.L.
        • Fitzgerald D.A.
        • Nathan P.J.
        • Tancer M.E.
        Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia.
        Biol Psychiatry. 2006; 59: 424-429
        • Rauch S.L.
        • Shin L.M.
        • Wright C.I.
        Neuroimaging studies of amygdala function in anxiety disorders.
        Ann NY Acad Sci. 2003; 985: 389-410
        • De Bellis M.D.
        • Casey B.J.
        • Dahl R.E.
        • Birmaher B.
        • Williamson D.E.
        • Thomas K.M.
        • et al.
        A pilot study of amygdala volumes in pediatric generalized anxiety disorder.
        Biol Psychiatry. 2000; 48: 51-57
        • Karst H.
        • Nair S.
        • Velzing E.
        • Rumpff-van Essen L.
        • Slagter E.
        • Shinnick-Gallagher P.
        • Joëls M.
        Glucocorticoids alter calcium conductances and calcium channel subunit expression in basolateral amygdala neurons.
        Eur J Neurosci. 2002; 16: 1083-1089
        • Duvarci S.
        • Pare D.
        Glucocorticoids enhance the excitability of principal basolateral amygdala neurons.
        J Neurosci. 2007; 27: 4482-4491
        • Moriceau S.
        • Wilson D.A.
        • Levine S.
        • Sullivan R.M.
        Dual circuitry for odor-shock conditioning during infancy: Corticosterone switches between fear and attraction via amygdala.
        J Neurosci. 2006; 26: 6737-6748
        • Herman J.P.
        • Figueiredo H.
        • Mueller N.K.
        • Ulrich-Lai Y.
        • Ostrander M.M.
        • Choi D.C.
        • Cullinan W.E.
        Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness.
        Front Neuroendocrinol. 2003; 24: 151-180
        • Feldman S.
        • Conforti N.
        • Itzik A.
        • Weidenfeld J.
        Differential effect of amygdaloid lesions on CRF-41, ACTH and corticosterone responses following neural stimuli.
        Brain Res. 1994; 658: 21-26
        • Nair S.M.
        • Werkman T.R.
        • Craig J.
        • Finnell R.
        • Joëls M.
        • Eberwine J.H.
        Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons.
        J Neurosci. 1998; 18: 2685-2696
        • Nishi M.
        • Kawata M.
        Dynamics of glucocorticoid receptor and mineralocorticoid receptor: Implications from live cell imaging studies.
        Neuroendocrinology. 2007; 85: 186-192
        • Rupprecht R.
        • Reul J.M.
        • van Steensel B.
        • Spengler D.
        • Söder M.
        • Berning B.
        Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands.
        Eur J Pharmacol. 1993; 247: 145-154
        • Rumpel S.
        • LeDoux J.
        • Zador A.
        • Malinow R.
        Postsynaptic receptor trafficking underlying a form of associative learning.
        Science. 2005; 308: 83-88
        • Dumas T.C.
        • Sapolsky R.M.
        Gene therapy against neurological insults: Sparing neurons versus sparing function.
        Trends Neurosci. 2001; 24: 695-700
        • Roy M.
        • Hom J.
        • Sapolsky R.M.
        Neuroprotection with herpes simplex vectors expressing virally derived anti-apoptotic agents.
        Brain Res. 2001; 901: 12-22