Advertisement
Priority Communication| Volume 66, ISSUE 6, P554-561, September 15, 2009

Download started.

Ok

Striatal Overexpression of ΔJunD Resets L-DOPA-Induced Dyskinesia in a Primate Model of Parkinson Disease

  • Olivier Berton
    Correspondence
    Address correspondence to Olivier Berton, Ph.D., Department of Psychiatry, University of Pennsylvania Medical School, 125 South 31st Street, TRL Building, Room 2218, Philadelphia, PA 19104-3403
    Affiliations
    Department of Psychiatry, University of Pennsylvania Medical School, Philadelphia, Pennsylvania

    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
    Search for articles by this author
  • Céline Guigoni
    Affiliations
    Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, Bordeaux, France
    Search for articles by this author
  • Qin Li
    Affiliations
    Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, Bordeaux, France
    Search for articles by this author
  • Bernard H. Bioulac
    Affiliations
    Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, Bordeaux, France
    Search for articles by this author
  • Incarnation Aubert
    Affiliations
    Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, Bordeaux, France
    Search for articles by this author
  • Christian E. Gross
    Affiliations
    Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, Bordeaux, France
    Search for articles by this author
  • Ralph J. DiLeone
    Affiliations
    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas

    Department of Psychiatry, Yale University, New Haven, Connecticut
    Search for articles by this author
  • Eric J. Nestler
    Affiliations
    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas

    Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
    Search for articles by this author
  • Erwan Bezard
    Affiliations
    Université Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, Bordeaux, France

    Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
    Search for articles by this author

      Background

      Involuntary movements, or dyskinesia, represent a debilitating complication of dopamine replacement therapy for Parkinson disease (PD). The transcription factor ΔFosB accumulates in the denervated striatum and dimerizes primarily with JunD upon repeated L-3,4-dihydroxyphenylalanine (L-DOPA) administration. Previous studies in rodents have shown that striatal ΔFosB levels accurately predict dyskinesia severity and indicate that this transcription factor may play a causal role in the dyskinesia sensitization process.

      Methods

      We asked whether the correlation previously established in rodents extends to the best nonhuman primate model of PD, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned macaque. We used western blotting and quantitative polymerase chain reaction (PCR) to compare ΔFosB protein and messenger RNA (mRNA) levels across two subpopulations of macaques with differential dyskinesia severity. Second, we tested the causal implication of ΔFosB in this primate model. Serotype 2 adeno-associated virus (AAV2) vectors were used to overexpress, within the motor striatum, either ΔFosB or ΔJunD, a truncated variant of JunD lacking a transactivation domain and therefore acting as a dominant negative inhibitor of ΔFosB.

      Results

      A linear relationship was observed between endogenous striatal levels of ΔFosB and the severity of dyskinesia in Parkinsonian macaques treated with L-DOPA. Viral overexpression of ΔFosB did not alter dyskinesia severity in animals previously rendered dyskinetic, whereas the overexpression of ΔJunD dramatically dropped the severity of this side effect of L-DOPA without altering the antiparkinsonian activity of the treatment.

      Conclusions

      These results establish a mechanism of dyskinesia induction and maintenance by L-DOPA and validate a strategy, with strong translational potential, to deprime the L-DOPA–treated brain.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nicholas A.P.
        • Lubin F.D.
        • Hallett P.J.
        • Vattem P.
        • Ravenscroft P.
        • Bezard E.
        • et al.
        Striatal histone modifications in models of levodopa-induced dyskinesia.
        J Neurochem. 2008; 106: 486-494
        • Konradi C.
        • Westin J.E.
        • Carta M.
        • Eaton M.E.
        • Kuter K.
        • Dekundy A.
        • et al.
        Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia.
        Neurobiol Dis. 2004; 17: 219-236
        • Cenci M.A.
        Transcription factors involved in the pathogenesis of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease.
        Amino Acids. 2002; 23: 105-109
        • Doucet J.P.
        • Nakabeppu Y.
        • Bedard P.J.
        • Hope B.T.
        • Nestler E.J.
        • Jasmin B.J.
        • et al.
        Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum.
        Eur J Neurosci. 1996; 8: 365-381
        • Vallone D.
        • Pellecchia M.T.
        • Morelli M.
        • Verde P.
        • DiChiara G.
        • Barone P.
        Behavioural sensitization in 6-hydroxydopamine-lesioned rats is related to compositional changes of the AP-1 transcription factor: Evidence for induction of FosB- and JunD-related proteins.
        Brain Res Mol Brain Res. 1997; 52: 307-317
        • Hope B.T.
        • Nye H.E.
        • Kelz M.B.
        • Self D.W.
        • Iadarola M.J.
        • Nakabeppu Y.
        • et al.
        Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments.
        Neuron. 1994; 13: 1235-1244
        • Pavon N.
        • Martin A.B.
        • Mendialdua A.
        • Moratalla R.
        ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice.
        Biol Psychiatry. 2006; 59: 64-74
        • Westin J.E.
        • Andersson M.
        • Lundblad M.
        • Cenci M.A.
        Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson's disease.
        Eur J Neurosci. 2001; 14: 1171-1176
        • Oueslati A.
        • Sgambato-Faure V.
        • Melon C.
        • Kachidian P.
        • Gubellini P.
        • Amri M.
        • et al.
        High-frequency stimulation of the subthalamic nucleus potentiates L-DOPA-induced neurochemical changes in the striatum in a rat model of Parkinson's disease.
        J Neurosci. 2007; 27: 2377-2386
        • Chen J.
        • Kelz M.B.
        • Hope B.T.
        • Nakabeppu Y.
        • Nestler E.J.
        Chronic Fos-related antigens: Stable variants of deltaFosB induced in brain by chronic treatments.
        J Neurosci. 1997; 17: 4933-4941
        • Chen J.
        • Nye H.E.
        • Kelz M.B.
        • Hiroi N.
        • Nakabeppu Y.
        • Hope B.T.
        • et al.
        Regulation of delta FosB and FosB-like proteins by electroconvulsive seizure and cocaine treatments.
        Mol Pharmacol. 1995; 48: 880-889
        • Andersson M.
        • Konradi C.
        • Cenci M.A.
        cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum.
        J Neurosci. 2001; 21: 9930-9943
        • Andersson M.
        • Westin J.E.
        • Cenci M.A.
        Time course of striatal DeltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment.
        Eur J Neurosci. 2003; 17: 661-666
        • McClung C.A.
        • Ulery P.G.
        • Perrotti L.I.
        • Zachariou V.
        • Berton O.
        • Nestler E.J.
        DeltaFosB: A molecular switch for long-term adaptation in the brain.
        Brain Res Mol Brain Res. 2004; 132: 146-154
        • Andersson M.
        • Hilbertson A.
        • Cenci M.A.
        Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease.
        Neurobiol Dis. 1999; 6: 461-474
        • Chen Z.
        • Guan Q.
        • Cao X.
        • Xu Y.
        • Wang L.
        • Sun S.
        Effect of antisense FosB and CREB on the expression of prodynorphin gene in rats with levodopa-induced dyskinesias.
        J Huazhong Univ Sci Technolog Med Sci. 2006; 26: 542-544
        • Tekumalla P.K.
        • Calon F.
        • Rahman Z.
        • Birdi S.
        • Rajput A.H.
        • Hornykiewicz O.
        • et al.
        Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson's disease.
        Biol Psychiatry. 2001; 50: 813-816
        • Bezard E.
        • Dovero S.
        • Prunier C.
        • Ravenscroft P.
        • Chalon S.
        • Guilloteau D.
        • et al.
        Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson's disease.
        J Neurosci. 2001; 21: 6853-6861
        • Bezard E.
        • Ferry S.
        • Mach U.
        • Stark H.
        • Leriche L.
        • Boraud T.
        • et al.
        Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function.
        Nat Med. 2003; 9: 762-767
        • Struhl K.
        The JUN oncoprotein, a vertebrate transcription factor, activates transcription in yeast.
        Nature. 1988; 332: 649-650
        • Aubert I.
        • Guigoni C.
        • Hakansson K.
        • Qin L.
        • Dovero S.
        • Barthe N.
        • et al.
        Increased D1 dopamine receptor signalling in levodopa-induced dyskinesia.
        Ann Neurol. 2005; 57: 17-26
        • Gold S.J.
        • Hoang C.V.
        • Potts B.W.
        • Porras G.
        • Pioli E.
        • Kim K.W.
        • et al.
        RGS9-2 negatively modulates L-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson's disease.
        J Neurosci. 2007; 27: 14338-14348
        • Guigoni C.
        • Dovero S.
        • Aubert I.
        • Qin L.
        • Bioulac B.H.
        • Bloch B.
        • et al.
        Levodopa-induced dyskinesia in MPTP-treated macaque is not dependent of the extent and pattern of the nigrostrial lesion.
        Eur J Neurosci. 2005; 22: 283-287
        • Nadjar A.
        • Brotchie J.M.
        • Guigoni C.
        • Li Q.
        • Zhou S.B.
        • Wang G.J.
        • et al.
        Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: A call for a reappraisal of the functional organization of the basal ganglia.
        J Neurosci. 2006; 26: 8653-8661
        • Guigoni C.
        • Qin L.
        • Aubert I.
        • Dovero S.
        • Bioulac B.H.
        • Bloch B.
        • et al.
        Involvement of sensorimotor, limbic, and associative basal ganglia domains in levodopa-induced dyskinesia.
        J Neurosci. 2005; 25: 2102-2107
        • Aubert I.
        • Guigoni C.
        • Li Q.
        • Dovero S.
        • Bioulac B.H.
        • Gross C.E.
        • et al.
        Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-dopa-induced dyskinesia.
        Biol Psychiatry. 2007; 61: 836-844
        • Horikawa S.
        • Takai T.
        • Toyosato M.
        • Takahashi H.
        • Noda M.
        • Kakidani H.
        • et al.
        Isolation and structural organization of the human preproenkephalin B gene.
        Nature. 1983; 306: 611-614
        • Yoshikawa K.
        • Williams C.
        • Sabol S.L.
        Rat brain preproenkephalin mRNA.
        J Biol Chem. 1984; 259: 14301-14308
        • Feger J.
        • Ohye C.
        • Gallouin F.
        • Albe-Fessard D.
        Stereotaxic technique for stimulation and recording in nonanaesthetized monkeys: Application to the determination of connections between caudate nucleus and substantia nigra.
        in: Meldrum B.S. Marsden C.D. Advances in Neurology. Raven, New York1975: 35-45
        • Boraud T.
        • Bezard E.
        • Bioulac B.
        • Gross C.
        Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alteration of pallidal neurons in the MPTP-treated monkey.
        Brain. 2001; 124: 546-557
        • François C.
        • Yelnik J.
        • Percheron G.
        A stereotaxic atlas of the basal ganglia in macaques.
        Brain Res Bull. 1996; 41: 151-158
        • Berton O.
        • Covington 3rd, H.E.
        • Ebner K.
        • Tsankova N.M.
        • Carle T.L.
        • Ulery P.
        • et al.
        Induction of deltaFosB in the periaqueductal gray by stress promotes active coping responses.
        Neuron. 2007; 55: 289-300
        • Hommel J.D.
        • Sears R.M.
        • Georgescu D.
        • Simmons D.L.
        • DiLeone R.J.
        Local gene knockdown in the brain using viral-mediated RNA interference.
        Nat Med. 2003; 9: 1539-1544
        • Taymans J.M.
        • Vandenberghe L.H.
        • Haute C.V.
        • Thiry I.
        • Deroose C.M.
        • Mortelmans L.
        • et al.
        Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain.
        Hum Gene Ther. 2007; 18: 195-206
        • Hiroi N.
        • Marek G.J.
        • Brown J.R.
        • Ye H.
        • Saudou F.
        • Vaidya V.A.
        • et al.
        Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures.
        J Neurosci. 1998; 18: 6952-6962
        • Zachariou V.
        • Bolanos C.A.
        • Selley D.E.
        • Theobald D.
        • Cassidy M.P.
        • Kelz M.B.
        • et al.
        An essential role for DeltaFosB in the nucleus accumbens in morphine action.
        Nat Neurosci. 2006; 9: 205-211
        • Kaplitt M.G.
        • Feigin A.
        • Tang C.
        • Fitzsimons H.L.
        • Mattis P.
        • Lawlor P.A.
        • et al.
        Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: An open label, phase I trial.
        Lancet. 2007; 369: 2097-2105
        • Valastro B.
        • Andersson M.
        • Lindgren H.S.
        • Cenci M.A.
        Expression pattern of JunD after acute or chronic L-DOPA treatment: Comparison with deltaFosB.
        Neuroscience. 2007; 144: 198-207
        • Brown P.H.
        • Kim S.H.
        • Wise S.C.
        • Sabichi A.L.
        • Birrer M.J.
        Dominant-negative mutants of cJun inhibit AP-1 activity through multiple mechanisms and with different potencies.
        Cell Growth Differ. 1996; 7: 1013-1021
        • Peakman M.C.
        • Colby C.
        • Perrotti L.I.
        • Tekumalla P.
        • Carle T.
        • Ulery P.
        • et al.
        Inducible, brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine.
        Brain Res. 2003; 970: 73-86