Advertisement

Major Depression Is a Risk Factor for Low Bone Mineral Density: A Meta-Analysis

      Background

      The role of depression as a risk factor for low bone mineral density (BMD) and osteoporosis is not fully acknowledged, mainly because the relevant literature is inconsistent and because information on the mechanisms mediating brain-to-bone signals is rather scanty.

      Methods

      Searching databases and reviewing citations in relevant articles, we identified 23 studies that quantitatively address the relationship between depression and skeletal status, comparing 2327 depressed with 21,141 nondepressed individuals. We subjected these studies to meta-analysis, assessing the association between depression and BMD as well as between depression and bone turnover markers.

      Results

      Overall, depressed individuals displayed lower BMD than nondepressed subjects, with a composite weighted mean effect size (d) of −.23 (95% confidence interval: −.33 to −.13; p < .001). The association between depression and BMD was similar in the spine, hip, and forearm. It was stronger in women (d = −.24) than men (d = −.12) and in premenopausal (d = −.31) than postmenopausal (d = −.12) women. Only women individually diagnosed for major depression by a psychiatrist with DSM criteria displayed significantly low BMD (d = −.36); women diagnosed by self-rating questionnaires did not (d = −.06). Depressed subjects had increased urinary levels of bone resorption markers (d = .52).

      Conclusions

      The present findings portray depression as a significant risk factor for low BMD. Premenopausal women who are psychiatrically diagnosed with major depression are particularly at high-risk for depression-associated low BMD. Hence, periodic BMD measurements and antiosteoporotic prophylactic and curative measures are strongly advocated for these patients.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Melton III, L.J.
        Epidemiology worldwide.
        Endocrinol Metab Clin North Am. 2003; 32: 1-13
        • US Department of Health and Human Services: Office of the Surgeon General
        Bone Health and Osteoporosis: A Report of the Surgeon General.
        (2004) (Accessed December 1, 2008)
        • Kanis J.A.
        • Oden A.
        • Johnell O.
        • Johansson H.
        • De Laet C.
        • Brown J.
        • et al.
        The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women.
        Osteoporos Int. 2007; 18: 1033-1046
        • Klibanski A.
        • Adams-Campbell L.
        • Bassford T.
        • Blair S.N.
        • Boden S.D.
        • Dickersin K.
        • et al.
        Osteoporosis prevention, diagnosis, and therapy.
        JAMA. 2001; 285: 785-795
        • Cizza G.
        • Ravn P.
        • Chrousos G.P.
        • Gold P.W.
        Depression: A major, unrecognized risk factor for osteoporosis?.
        Trends Endocrinol Metab. 2001; 12: 198-203
        • Mezuk B.
        • Eaton W.W.
        • Golden S.H.
        Depression and osteoporosis: Epidemiology and potential mediating pathways.
        Osteoporos Int. 2008; 19: 1-12
        • Williams L.J.
        • Pasco J.A.
        • Jacka F.N.
        • Henry M.J.
        • Dodd S.
        • Berk M.
        Depression and Bone Metabolism.
        Psychother Psychosom. 2008; 78: 16-25
        • Murray C.J.
        • Lopez A.D.
        Alternative projections of mortality and disability by cause 1990–2020: Global burden of disease study.
        Lancet. 1997; 349: 1498-1504
        • Blazer D.G.
        • Kessler R.C.
        • McGonagle K.A.
        • Swartz M.S.
        The prevalence and distribution of major depression in a national community sample: The national comorbidity survey.
        Am J Psychiatry. 1994; 151: 979-986
        • Yirmiya R.
        • Goshen I.
        • Bajayo A.
        • Kreisel T.
        • Feldman S.
        • Tam J.
        • et al.
        Depression induces bone loss through stimulation of the sympathetic nervous system.
        Proc Natl Acad Sci U S A. 2006; 103: 16876-16881
        • Gold D.T.
        • Solimeo S.
        Osteoporosis and depression: A historical perspective.
        Curr Osteoporos Rep. 2006; 4: 134-139
        • Ilias I.
        • Alesci S.
        • Gold P.W.
        • Chrousos G.P.
        Depression and osteoporosis in men: Association or casual link?.
        Hormones. 2006; 5: 9-16
        • Lyles K.W.
        Osteoporosis and depression: Shedding more light upon a complex relationship.
        J Am Geriatr Soc. 2001; 49: 827-828
        • Altindag O.
        • Altindag A.
        • Asoglu M.
        • Gunes M.
        • Soran N.
        • Deveci Z.
        Relation of cortisol levels and bone mineral density among premenopausal women with major depression.
        Int J Clin Pract. 2007; 61: 416-420
        • Amsterdam J.D.
        • Hooper M.B.
        Bone density measurement in major depression.
        Prog Neuro-Psychopharmacology Biol Psychiatry. 1998; 22: 267-277
        • Diem S.J.
        • Blackwell T.L.
        • Stone K.L.
        • Yaffe K.
        • Cauley J.A.
        • Whooley M.A.
        • et al.
        Depressive symptoms and rates of bone loss at the hip in older women.
        J Am Geriatr Soc. 2007; 55: 824-831
        • Eskandari F.
        • Martinez P.E.
        • Torvik S.
        • Phillips T.M.
        • Sternberg E.M.
        • Mistry S.
        • et al.
        Low bone mass in premenopausal women with depression.
        Arch Intern Med. 2007; 167: 2329-2336
        • Furlan P.M.
        • Ten Have T.
        • Cary M.
        • Zemel B.
        • Wehrli F.
        • Katz I.R.
        • et al.
        The role of stress-induced cortisol in the relationship between depression and decreased bone mineral density.
        Biol Psychiatry. 2005; 57: 911-917
        • Herran A.
        • Amado J.A.
        • Garcia-Unzueta M.T.
        • Vazquez-Barquero J.L.
        • Perera L.
        • Gonzalez-Macias J.
        Increased bone remodeling in first-episode major depressive disorder.
        Psychosom Med. 2000; 62: 779-782
        • Jacka F.N.
        • Pasco J.A.
        • Henry M.J.
        • Kotowicz M.A.
        • Dodd S.
        • Nicholson G.C.
        • et al.
        Depression and bone mineral density in a community sample of perimenopausal women: Geelong osteoporosis study.
        Menopause. 2005; 12: 88-91
        • Kahl K.G.
        • Greggersen W.
        • Rudolf S.
        • Stoeckelhuber B.M.
        • Bergmann-Koester C.U.
        • Dibbelt L.
        • Schweiger U.
        Bone mineral density, bone turnover, and osteoprotegerin in depressed women with and without borderline personality disorder.
        Psychosom Med. 2006; 68: 669-674
        • Kahl K.G.
        • Rudolf S.
        • Stoeckelhuber B.M.
        • Dibbelt L.
        • Gehl H.B.
        • Markhof K.
        • et al.
        Bone mineral density, markers of bone turnover, and cytokines in young women with borderline personality disorder with and without comorbid major depressive disorder.
        Am J Psychiatry. 2005; 162: 168-174
        • Kavuncu V.
        • Kuloglu M.
        • Kaya A.
        • Sahin S.
        • Atmaca M.
        • Firidin B.
        Bone metabolism and bone mineral density in premenopausal women with mild depression.
        Yonsei Med J. 2002; 43: 101-108
        • Michelson D.
        • Stratakis C.
        • Hill L.
        • Reynolds J.
        • Galliven E.
        • Chrousos G.
        • Gold P.
        Bone mineral density in women with depression.
        N Engl J Med. 1996; 335: 1176-1181
        • Mussolino M.E.
        • Jonas B.S.
        • Looker A.C.
        Depression and bone mineral density in young adults: Results from NHANES III.
        Psychosom Med. 2004; 66: 533-537
        • Ozsoy S.
        • Esel E.
        • Turan M.T.
        • Kula M.
        • Demir H.
        • Kartalci S.
        • Kokbudak Z.
        [Is there any alteration in bone mineral density in patients with depression?].
        Turk Psikiyatri Derg. 2005; 16: 77-82
        • Reginster J.Y.
        • Deroisy R.
        • Paul I.
        • Hansenne M.
        • Ansseau M.
        Depressive vulnerability is not an independent risk factor for osteoporosis in postmenopausal women.
        Maturitas. 1999; 33: 133-137
        • Robbins J.
        • Hirsch C.
        • Whitmer R.
        • Cauley J.
        • Harris T.
        The association of bone mineral density and depression in an older population.
        J Am Geriatr Soc. 2001; 49: 732-736
        • Schweiger U.
        • Deuschle M.
        • Korner A.
        • Lammers C.H.
        • Schmider J.
        • Gotthardt U.
        • et al.
        Low lumbar bone mineral density in patients with major depression.
        Am J Psychiatry. 1994; 151: 1691-1693
        • Schweiger U.
        • Weber B.
        • Deuschle M.
        • Heuser I.
        Lumbar bone mineral density in patients with major depression: Evidence of increased bone loss at follow-up.
        Am J Psychiatry. 2000; 157: 118-120
        • Sogaard A.J.
        • Joakimsen R.M.
        • Tverdal A.
        • Fonnebo V.
        • Magnus J.H.
        • Berntsen G.K.
        Long-term mental distress, bone mineral density and non-vertebral fractures.
        Osteoporos Int. 2005; 16: 887-897
        • Spangler L.
        • Scholes D.
        • Brunner R.L.
        • Robbins J.
        • Reed S.D.
        • Newton K.M.
        • et al.
        Depressive symptoms, bone loss, and fractures in postmenopausal women.
        J Gen Intern Med. 2008; 23: 567-574
        • Whooley M.A.
        • Cauley J.A.
        • Zmuda J.M.
        • Haney E.M.
        • Glynn N.W.
        Depressive symptoms and bone mineral density in older men.
        J Geriatr Psychiatry Neurol. 2004; 17: 88-92
        • Whooley M.A.
        • Kip K.E.
        • Cauley J.A.
        • Ensrud K.E.
        • Nevitt M.C.
        • Browner W.S.
        Depression, falls, and risk of fracture in older women.
        Arch Intern Med. 1999; 159: 484-490
        • Wong S.Y.
        • Lau E.M.
        • Lynn H.
        • Leung P.C.
        • Woo J.
        • Cummings S.R.
        • Orwoll E.
        Depression and bone mineral density: Is there a relationship in elderly Asian men?.
        Osteoporos Int. 2005; 16: 610-615
        • Yazici A.E.
        • Bagis S.
        • Tot S.
        • Sahin G.
        • Yazici K.
        • Erdogan C.
        Bone mineral density in premenopausal women with major depression.
        Joint Bone Spine. 2005; 72: 540-543
        • Yazici K.M.
        • Akinci A.
        • Sutcu A.
        • Ozcakar L.
        Bone mineral density in premenopausal women with major depressive disorder.
        Psychiatry Res. 2003; 117: 271-275
        • Cohen J.
        Statistical Power Analysis for the Behavioral Sciences.
        Academic Press, New York1977
        • Egger M.
        • Davey S.G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Begg C.B.
        • Mazumdar M.
        Operating characteristics of a rank correlation test for publication bias.
        Biometrics. 1994; 50: 1088-1101
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th Edition. American Psychiatric Press, Washington, DC1994
        • Rosenthal R.
        Meta-analysis: A review.
        Psychosom Med. 1991; 53: 247-271
        • Riggs B.L.
        • Khosla S.
        • Melton III, L.J.
        Sex steroids and the construction and conservation of the adult skeleton.
        Endocr Rev. 2002; 23: 279-302
        • Bale T.L.
        Stress sensitivity and the development of affective disorders.
        Horm Behav. 2006; 50: 529-533
        • Peeters F.
        • Nicholson N.A.
        • Berkhof J.
        Cortisol responses to daily events in major depressive disorder.
        Psychosom Med. 2003; 65: 836-841
        • Yesavage J.A.
        Geriatric depression scale.
        Psychopharmacol Bull. 1988; 24: 709-711
        • Irwin M.
        • Artin K.H.
        • Oxman M.N.
        Screening for depression in the older adult: Criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D).
        Arch Intern Med. 1999; 159: 1701-1704
        • Vogel J.M.
        • Wasnich R.D.
        • Ross P.D.
        The clinical relevance of calcaneus bone mineral measurements: A review.
        Bone Miner. 1988; 5: 35-58
        • Ho A.Y.
        • Kung A.W.
        Determinants of peak bone mineral density and bone area in young women.
        J Bone Miner Metab. 2005; 23: 470-475
        • MacInnis R.J.
        • Cassar C.
        • Nowson C.A.
        • Paton L.M.
        • Flicker L.
        • Hopper J.L.
        • et al.
        Determinants of bone density in 30- to 65-year-old women: A co-twin study.
        J Bone Miner Res. 2003; 18: 1650-1656
        • Cauley J.A.
        • Fullman R.L.
        • Stone K.L.
        • Zmuda J.M.
        • Bauer D.C.
        • Barrett-Connor E.
        • et al.
        Factors associated with the lumbar spine and proximal femur bone mineral density in older men.
        Osteoporos Int. 2005; 16: 1525-1537
        • Diem S.J.
        • Blackwell T.L.
        • Stone K.L.
        • Yaffe K.
        • Haney E.M.
        • Bliziotes M.M.
        • Ensrud K.E.
        Use of antidepressants and rates of hip bone loss in older women: The study of osteoporotic fractures.
        Arch Intern Med. 2007; 167: 1240-1245
        • Haney E.M.
        • Chan B.K.
        • Diem S.J.
        • Ensrud K.E.
        • Cauley J.A.
        • Barrett-Connor E.
        • et al.
        Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men.
        Arch Intern Med. 2007; 167: 1246-1251
        • Richards J.B.
        • Papaioannou A.
        • Adachi J.D.
        • Joseph L.
        • Whitson H.E.
        • Prior J.C.
        • Goltzman D.
        Effect of selective serotonin reuptake inhibitors on the risk of fracture.
        Arch Intern Med. 2007; 167: 188-194
        • Williams L.J.
        • Henry M.J.
        • Berk M.
        • Dodd S.
        • Jacka F.N.
        • Kotowicz M.A.
        • et al.
        Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression.
        Int Clin Psychopharmacol. 2008; 23: 84-87
        • Ensrud K.E.
        • Blackwell T.
        • Mangione C.M.
        • Bowman P.J.
        • Bauer D.C.
        • Schwartz A.
        • et al.
        Central nervous system active medications and risk for fractures in older women.
        Arch Intern Med. 2003; 163: 949-957
        • Liu B.
        • Anderson G.
        • Mittmann N.
        • To T.
        • Axcell T.
        • Shear N.
        Use of selective serotonin-reuptake inhibitors of tricyclic antidepressants and risk of hip fractures in elderly people.
        Lancet. 1998; 351: 1303-1307
        • Ziere G.
        • Dieleman J.P.
        • van der Cammen T.J.
        • Hofman A.
        • Pols H.A.
        • Stricker B.H.
        Selective serotonin reuptake inhibiting antidepressants are associated with an increased risk of nonvertebral fractures.
        J Clin Psychopharmacol. 2008; 28: 411-417
        • Warden S.J.
        • Bliziotes M.M.
        • Wiren K.M.
        • Eshleman A.J.
        • Turner C.H.
        Neural regulation of bone and the skeletal effects of serotonin (5-hydroxytryptamine).
        Mol Cell Endocrinol. 2005; 242: 1-9
        • Bab I.
        • Yirmiya R.
        Depression, selective serotonin re-uptake inhibitors and the regulation of bone mass.
        IBMS Bonekey. 2009; 6: 8-15
        • Battaglino R.
        • Fu J.
        • Spate U.
        • Ersoy U.
        • Joe M.
        • Sedaghat L.
        • Stashenko P.
        Serotonin regulates osteoclast differentiation through its transporter.
        J Bone Miner Res. 2004; 19: 1420-1431
        • Collet C.
        • Schiltz C.
        • Geoffroy V.
        • Maroteaux L.
        • Launay J.M.
        • de Vernejoul M.C.
        The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation.
        FASEB J. 2008; 22: 418-427
        • Gustafsson B.I.
        • Thommesen L.
        • Stunes A.K.
        • Tommeras K.
        • Westbroek I.
        • Waldum H.L.
        • et al.
        Serotonin and fluoxetine modulate bone cell function in vitro.
        J Cell Biochem. 2006; 98: 139-151
        • Yadav V.K.
        • Ryu J.H.
        • Suda N.
        • Tanaka K.F.
        • Gingrich J.A.
        • Schutz G.
        • et al.
        Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum.
        Cell. 2008; 135: 825-837
        • Christenson R.H.
        Biochemical markers of bone metabolism: An overview.
        Clin Biochem. 1997; 30: 573-593
        • Cherruau M.
        • Morvan F.O.
        • Schirar A.
        • Saffar J.L.
        Chemical sympathectomy-induced changes in TH-, VIP-, and CGRP-immunoreactive fibers in the rat mandible periosteum: Influence on bone resorption.
        J Cell Physiol. 2003; 194: 341-348
        • Elefteriou F.
        • Ahn J.D.
        • Takeda S.
        • Starbuck M.
        • Yang X.
        • Liu X.
        • et al.
        Leptin regulation of bone resorption by the sympathetic nervous system and CART.
        Nature. 2005; 434: 514-520
        • Hill E.L.
        • Elde R.
        Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat.
        Cell Tissue Res. 1991; 264: 469-480
        • Hohmann E.L.
        • Elde R.P.
        • Rysavy J.A.
        • Einzig S.
        • Gebhard R.L.
        Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers.
        Science. 1986; 232: 868-871
        • Imai S.
        • Matsusue Y.
        Neuronal regulation of bone metabolism and anabolism: Calcitonin gene-related peptide-, substance P-, and tyrosine hydroxylase-containing nerves and the bone.
        Microsc Res Tech. 2002; 58: 61-69
        • Takeda S.
        • Elefteriou F.
        • Levasseur R.
        • Liu X.
        • Zhao L.
        • Parker K.L.
        • et al.
        Leptin regulates bone formation via the sympathetic nervous system.
        Cell. 2002; 111: 305-317
        • Takeeeda T.S.
        • Karsenty G.
        Molecular bases of the sympathetic regulation of bone mass.
        Bone. 2008; 42: 837-840
        • Tam J.
        • Trembovler V.
        • Di Marzo V.
        • Petrosino S.
        • Leo G.
        • Alexandrovich A.
        • et al.
        The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling.
        FASEB J. 2008; 22: 285-294
        • Togari A.
        Adrenergic regulation of bone metabolism: Possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells.
        Microsc Res Tech. 2002; 58: 77-84
        • Wong M.L.
        • Kling M.A.
        • Munson P.J.
        • Listwak S.
        • Licinio J.
        • Prolo P.
        • et al.
        Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: Relation to hypercortisolism and corticotropin-releasing hormone.
        Proc Natl Acad Sci U S A. 2000; 97: 325-330
        • Alesci S.
        • De Martino M.U.
        • Ilias I.
        • Gold P.W.
        • Chrousos G.P.
        Glucocorticoid-induced osteoporosis: from basic mechanisms to clinical aspects.
        Neuroimmunomodulation. 2005; 12: 1-19
        • Berris K.K.
        • Repp A.L.
        • Kleerekoper M.
        Glucocorticoid-induced osteoporosis.
        Curr Opin Endocrinol Diabetes Obes. 2007; 14: 446-450
        • Alesci S.
        • Martinez P.E.
        • Kelkar S.
        • Ilias I.
        • Ronsaville D.S.
        • Listwak S.J.
        • et al.
        Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: Clinical implications.
        J Clin Endocrinol Metab. 2005; 90: 2522-2530
        • Goshen I.
        • Kreisel T.
        • Ben-Menachem-Zidon O.
        • Licht T.
        • Weidenfeld J.
        • Ben-Hur T.
        • Yirmiya R.
        Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression.
        Mol Psychiatry. 2008; 13: 717-728
        • Goshen I.
        • Yirmiya R.
        Interleukin-1 (IL-1): A central regulator of stress responses.
        Front Neuroendocrinol. 2009; 30: 30-45
        • Pollak Y.
        • Yirmiya R.
        Cytokine-induced changes in mood and behaviour: Implications for “depression due to a general medical condition”, immunotherapy and antidepressive treatment.
        Int J Neuropsychopharmacol. 2002; 5: 389-399
        • Licinio J.
        • Wong M.L.
        The role of inflammatory mediators in the biology of major depression: Central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection.
        Mol Psychiatry. 1999; 4: 317-327
        • Manolagas S.C.
        Role of cytokines in bone resorption.
        Bone. 1995; 17: 63S-67S
        • Manolagas S.C.
        The role of IL-6 type cytokines and their receptors in bone.
        Ann N Y Acad Sci. 1998; 840: 194-204
        • Kondo A.
        • Togari A.
        In vivo stimulation of sympathetic nervous system modulates osteoblastic activity in mouse Calvaria.
        Am J Physiol Endocrinol Metab. 2003; 285: E661-E667