Advertisement

Acute Psychological Stress Reduces Working Memory-Related Activity in the Dorsolateral Prefrontal Cortex

  • Shaozheng Qin
    Correspondence
    Address reprint requests to Shaozheng Qin, M.S., Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
    Affiliations
    Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands

    Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Erno J. Hermans
    Affiliations
    Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands

    Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Hein J.F. van Marle
    Affiliations
    Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands

    Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
    Search for articles by this author
  • Jing Luo
    Affiliations
    Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
    Search for articles by this author
  • Guillén Fernández
    Affiliations
    Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands

    Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
    Search for articles by this author

      Background

      Acute psychological stress impairs higher-order cognitive function such as working memory (WM). Similar impairments are seen in various psychiatric disorders that are associated with higher susceptibility to stress and with prefrontal cortical dysfunctions, suggesting that acute stress may play a potential role in such dysfunctions. However, it remains unknown whether acute stress has immediate effects on WM-related prefrontal activity.

      Methods

      Using functional magnetic resonance imaging (fMRI), we investigated neural activity of 27 healthy female participants during a blocked WM task (numerical N-back) while moderate psychological stress was induced by viewing strongly aversive (vs. neutral) movie material together with a self-referencing instruction. To assess stress manipulation, autonomic and endocrine, as well as subjective, measurements were acquired throughout the experiment.

      Results

      Successfully induced acute stress resulted in significantly reduced WM-related activity in the dorsolateral prefrontal cortex (DLPFC), and was accompanied by less deactivation in brain regions that are jointly referred to as the default mode network.

      Conclusions

      This study demonstrates that experimentally induced acute stress in healthy volunteers results in a reduction of WM-related DLPFC activity and reallocation of neural resources away from executive function networks. These effects may be explained by supraoptimal levels of catecholamines potentially in conjunction with elevated levels of cortisol. A similar mechanism involving acute stress as a mediating factor may play an important role in higher-order cognitive deficits and hypofrontality observed in various psychiatric disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Kloet E.R.
        • Joëls M.
        • Holsboer F.
        Stress and the brain: From adaptation to disease.
        Nat Rev Neurosci. 2005; 6: 463-475
        • Arnsten A.F.T.
        • Goldman-Rakic P.S.
        Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism.
        Arch Gen Psychiatry. 1998; 55: 362-369
        • Elzinga B.M.
        • Roelofs K.
        Cortisol-induced impairments of working memory require acute sympathetic activation.
        Behav Neurosci. 2005; 119: 98-103
        • Schoofs D.
        • Preuss D.
        • Wolf O.T.
        Psychosocial stress induces working memory impairments in an n-back paradigm.
        Psychoneuroendocrinology. 2008; 33: 643-653
        • Mazure C.M.
        Does stress cause psychiatric illness?.
        in: Spiegel D. Progress in Psychiatry, vol 46. American Psychiatric Publishing, Washington, DC1995: 270
        • Hammen C.
        • Gitlin M.
        Stress reactivity in bipolar patients and its relation to prior history of disorder.
        Am J Psychiatry. 1997; 154: 856-857
        • Arnsten A.F.T.
        • Li B.M.
        Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions.
        Biol Psychiatry. 2005; 57: 1377-1384
        • Arnsten A.F.T.
        Catecholamine and second messenger influences on prefrontal cortical networks of “representational knowledge”: A rational bridge between genetics and the symptoms of mental illness.
        Cereb Cortex. 2007; 17: i6-i15
        • Driesen N.R.
        • Leung H.C.
        • Calhoun V.D.
        • Constable R.T.
        • Gueorguieva R.
        • Hoffman R.
        • et al.
        Impairment of working memory and response in schizophrenia: Functional magnetic resonance imaging evidence.
        Biol Psychiatry. 2008; 64: 1026-1034
        • Baddeley A.
        Working memory: Looking back and looking forward.
        Nat Rev Neurosci. 2003; 4: 829-839
        • Deutch A.Y.
        • Roth R.H.
        The determinants of stress-induced activation of the prefrontal cortical dopamine system.
        Prog Brain Res. 1990; 85: 367-402
        • Birnbaum S.G.
        • Yuan P.X.
        • Wang M.
        • Vijayraghavan S.
        • Bloom A.K.
        • Davis D.J.
        • et al.
        Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.
        Science. 2004; 306: 882-884
        • Wang M.
        • Ramos B.P.
        • Paspalas C.D.
        • Shu Y.
        • Simen A.
        • Duque A.
        • et al.
        Alpha2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex.
        Cell. 2007; 129: 397-410
        • Joëls M.
        • Pu Z.
        • Wiegert O.
        • Oitzl M.S.
        • Krugers H.J.
        Learning under stress: How does it work?.
        Trends Cogn Sci. 2006; 10: 152-158
        • Brunner R.
        • Schaefer D.
        • Hess K.
        • Parzer P.
        • Resch F.
        • Schwab S.
        Effect of corticosteroids on short-term and long-term memory.
        Neurology. 2005; 64: 335-337
        • Roozendaal B.
        • Okuda S.
        • De Quervain D.J.
        • McGaugh J.L.
        Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions.
        Neuroscience. 2006; 138: 901-910
        • Goldstein L.E.
        • Rasmusson A.M.
        • Bunney B.S.
        • Rober H.R.
        Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat.
        J Neurol Sci. 1996; 16: 4787-4798
        • Hampson M.
        • Driesen N.R.
        • Skudlarski P.
        • Gore J.C.
        • Constable R.T.
        Brain connectivity related to working memory performance.
        J Neurol Sci. 2006; 26: 13338-13343
        • Esposito F.
        • Berolino A.
        • Scarabino T.
        • Latorre V.
        • Blasti G.
        • Popolizio T.
        • et al.
        Independent component model of the default-mode brain function: Assessing the impact of active thinking.
        Brain Res Bull. 2006; 70: 263-269
        • Schneider W.
        • Shiffrin R.M.
        Controlled and automatic human information processing.
        Psychol Rev. 1977; 84: 1-66
        • Seibert P.S.
        • Ellis H.C.
        Irrelevant thoughts, emotional mood states, and cognitive task performance.
        Mem Cogn. 1991; 19: 507-513
        • Stawski R.S.
        • Sliwinski M.J.
        • Smyth J.M.
        Stress-related cognitive interference predicts cognitive function in old age.
        Psychol Aging. 2006; 21: 535-544
        • Selemon L.D.
        • Goldman-Rakic P.S.
        Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior.
        J Neurol Sci. 1998; 8: 4049-4068
        • Pomarol-Clotet E.
        • Salvador R.
        • Sarró S.
        • Gomar J.
        • Vila F.
        • Martínez Á.
        • et al.
        Failure to deactivate in the prefrontal cortex in schizophrenia: Dysfunction of the default mode network?.
        Psychol Med. 2008; 38: 1185-1193
        • Kirschbaum C.
        • Kudielka B.M.
        • Gaab J.
        • Schommer N.C.
        • Hellhammer D.H.
        Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis.
        Psychosom Med. 1999; 61: 154-162
        • Kudielka B.M.
        • Kirschbaum C.
        Sex differences in HPA axis responses to stress: A review.
        Biol Psychol. 2005; 69: 113-132
        • Watson D.
        • Clark L.A.
        • Tellegen A.
        Development and validation of brief measures of positive and negative affect: The PANAS scales.
        J Pers Soc Psychol. 1988; 54: 1063-1070
        • Mason J.W.
        A review of psychoendocrine research on the pituitary-adrenal cortical system.
        Psychosom Med. 1968; 30: 576-607
        • van Aken M.O.
        • Romijn J.A.
        • Miltenburg J.A.
        • Lentjes E.G.
        Automated measurement of salivary cortisol.
        Clin Chem. 2003; 49: 1408-1409
        • Griswold M.A.
        • Blaimer M.
        • Breuer F.
        • Heidemann R.M.
        • Mueller M.
        • Jakob P.M.
        Parallel magnetic resonance imaging using the GRAPPA operator formalism.
        Magn Reson Med. 2002; 54: 1553-1556
        • Friston K.
        • Holmes A.P.
        • Worsley K.
        • Poline J.
        • Frackowiak R.
        Statistical parametric maps in functional imaging: A general linear approach.
        Hum Brain Mapp. 1995; 2: 189-210
        • Worsley K.J.
        • Marrett S.
        • Neelin P.
        • Vandal A.C.
        • Friston K.J.
        • Evans A.C.
        A unified statistical approach for determining significant signals in images of cerebral activation.
        Hum Brain Mapp. 1996; 4: 58-73
        • Callicott J.H.
        • Mattay V.S.
        • Bertolino A.
        • Finn K.
        • Coppola R.
        • Frank J.A.
        • et al.
        Physiological characteristics of capacity constraints in working memory as revealed by functional MRI.
        Cereb Cortex. 1999; 9: 20-26
        • Callicott J.H.
        • Bertolino A.
        • Mattay V.S.
        • Langheim F.J.
        • Duyn J.
        • Coppola R.
        • et al.
        Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited.
        Cereb Cortex. 2000; 10: 1078-1092
        • Greicius M.D.
        • Krasnow B.
        • Reiss A.L.
        • Menon V.
        Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.
        Proc Natl Acad Sci U S A. 2003; 100: 253-258
        • Brett M.
        • Anton J.L.
        • Valabregue R.
        • Poline J.B.
        Region of interest analysis using an SPM toolbox.
        Neuroimage. 2002; 16 (Abstract): 497
        • Sved A.F.
        • Cano G.
        • Passerin A.M.
        • Rabin B.S.
        The locus coeruleus, Barrington's nucleus, and neural circuits of stress.
        Physiol Behav. 2002; 77: 737-742
        • Berridge C.W.
        • Waterhouse B.D.
        The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes.
        Brain Res Brain Res Rev. 2003; 42: 33-84
        • Morilak D.A.
        • Barrera G.
        • Echevarria D.J.
        • Garcia A.S.
        • Hernandez A.
        • Ma S.
        • et al.
        Role of brain norepinephrine in the behavioral response to stress.
        Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29: 1214-1224
        • Aston-Jones G.
        • Cohen J.D.
        An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance.
        Annu Rev Neurosci. 2005; 28: 403-450
        • Aston-Jones G.
        • Rajkowski J.
        • Cohen J.
        Role of locus coeruleus in attention and behavioral flexibility.
        Biol Psychiatry. 1999; 46: 1309-1320
        • Vijayraghavan S.
        • Wang M.
        • Birnbaum S.G.
        • Williams G.V.
        • Arnsten A.F.
        Inverted-u dopamine D1 receptor actions on prefrontal neurons engaged in working memory.
        Nat Neurosci. 2007; 10: 376-384
        • Roozendaal B.
        • Quirarte G.L.
        • McGaugh J.L.
        Glucocorticoids interact with the basolateral amygdala β-adrenoceptor–cAMP/cAMP/PKA system in influencing memory consolidation.
        Eur J Neurosci. 2002; 15: 553-560
        • Gründemann D.
        • Schechinger B.
        • Rappold G.
        • Schömig E.
        Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter.
        Nat Neurosci. 1998; 1: 349-351
        • Gusnard D.A.
        • Raichle M.E.
        • Raichle M.E.
        Searching for a baseline: Functional imaging and the resting human brain.
        Nat Rev Neurosci. 2001; 2: 685-694
        • Mason M.F.
        • Norton M.I.
        • Van Horn J.D.
        • Wegner D.M.
        • Grafton S.T.
        • Macrae C.N.
        Wandering minds: The default network and stimulus-independent thought.
        Science. 2007; 315: 393-395
        • Wang J.
        • Rao H.
        • Wetmore G.S.
        • Furlan P.M.
        • Korczykowski M.
        • Dinges D.F.
        • et al.
        Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress.
        Proc Natl Acad Sci U S A. 2006; 102: 17804-17809
        • Diamond D.M.
        • Campbell A.M.
        • Park C.R.
        • Halonen J.
        • Zoladz P.R.
        The temporal dynamics model of emotional memory processing: A synthesis on the neurobiological basis of stressinduced amnesia, flashbulb and traumatic memories, and the Yerkes–Dodson law.
        Neural Plast. 2007; 2007: 1-33