Advertisement
Archival Report| Volume 66, ISSUE 3, P275-282, August 01, 2009

Download started.

Ok

Increased Vulnerability to Depressive-Like Behavior of Mice with Decreased Expression of VGLUT1

      Background

      Many studies link depression to an increase in the excitatory–inhibitory ratio in the forebrain. Presynaptic alterations in a shared pathway of the glutamate/gamma-aminobutyric acid (GABA) cycle may account for this imbalance. Evidence suggests that decreased vesicular glutamate transporter 1 (VGLUT1) levels in the forebrain affect the glutamate/GABA cycle and induce helpless behavior. We studied decreased VGLUT1 as a potential factor enhancing a depressive-like phenotype in an animal model.

      Methods

      Glutamate and GABA synthesis as well as oxidative metabolism were studied in heterozygous mice for the VGLUT1+/– and wildtype. The regulation of neurotransmitter levels, proteins involved in the glutamate/GABA cycle, and behavior by both genotype and chronic mild stress (CMS) were studied. Finally, the effect of chronic imipramine on VGLUT1 control and CMS mice was studied.

      Results

      VGLUT1+/– mice showed increased neuronal synthesis of glutamate; decreased cortical and hippocampal GABA, VGLUT1, and excitatory amino acid transporter 1 (EAAT1) as well as helplessness and anhedonia. CMS induced an increase of glutamate and a decrease of GABA, the vesicular GABA transporter (VGAT), and glutamic acid decarboxylase 65 (GAD65) in both areas and led to upregulation of EAAT1 in the hippocampus. Moreover, CMS induced anhedonia, helplessness, anxiety, and impaired recognition memory. VGLUT1+/– CMS mice showed a combined phenotype (genotype plus stress) and specific alterations, such as an upregulation of VGLUT2 and hyperlocomotion. Moreover, an increased vulnerability to anhedonia and helplessness reversible by chronic imipramine was shown.

      Conclusions

      These studies highlight a crucial role for decreased VGLUT1 in the forebrain as a biological mediator of increased vulnerability to chronic mild stress.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krystal J.H.
        • Sanacora G.
        • Blumberg H.
        • Anand A.
        • Charney D.S.
        • Marek G.
        • et al.
        Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments.
        Mol Psychiatry. 2002; 7: S71-S80
        • Cryan J.F.
        • Kaupmann K.
        Don't worry “B” happy!: A role for GABAB receptors in anxiety and depression.
        Trends Pharmacol Sci. 2005; 26: 36-43
        • Honig A.
        • Bartlett J.R.
        • Bouras N.
        • Bridges P.K.
        Amino acid levels in depression: A preliminary investigation.
        J Psychiatr Res. 1988; 22: 159-164
        • Sanacora G.
        • Mason G.F.
        • Rothman D.L.
        • Behar K.L.
        • Hyder F.
        • Petroff O.A.
        • et al.
        Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 1999; 56: 1043-1047
        • Sanacora G.
        • Gueorguieva R.
        • Epperson C.N.
        • Wu Y.T.
        • Appel M.
        • Rothman D.L.
        • et al.
        Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression.
        Arch Gen Psychiatry. 2004; 61: 705-713
        • Bhagwagar Z.
        • Wylezinska M.
        • Jezzard P.
        • Evans J.
        • Ashworth F.
        • Sule A.
        • et al.
        Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects.
        Biol Psychiatry. 2007; 61: 806-812
        • Vieira D.S.
        • Naffah-Mazacoratti M.G.
        • Zukerman E.
        • Senne Soares C.A.
        • Alonso E.O.
        • Faulhaber M.H.
        • et al.
        Cerebrospinal fluid GABA levels in chronic migraine with and without depression.
        Brain Res. 2006; 1090: 197-201
        • Sanacora G.
        • Mason G.F.
        • Rothman D.L.
        • Krystal J.H.
        Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors.
        Am J Psychiatry. 2002; 159: 663-665
        • Choudary P.V.
        • Molnar M.
        • Evans S.J.
        • Tomita H.
        • Li J.Z.
        • Vawter M.P.
        • et al.
        Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.
        Proc Natl Acad Sci U S A. 2005; 102: 15653-15658
        • Guidotti A.
        • Auta J.
        • Davis J.M.
        • Di-Giorgi-Gerevini V.
        • Dwivedi Y.
        • Grayson D.R.
        • et al.
        Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study.
        Arch Gen Psychiatry. 2000; 57: 1061-1069
        • Fatemi S.H.
        • Stary J.M.
        • Earle J.A.
        • Araghi-Niknam M.
        • Eagan E.
        GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and reelin proteins in cerebellum.
        Schizophr Res. 2005; 72: 109-122
        • Takamori S.
        VGLUTs: “exciting” times for glutamatergic research?.
        Neurosci Res. 2006; 55: 343-351
        • Wojcik S.M.
        • Rhee J.S.
        • Herzog E.
        • Sigler A.
        • Jahn R.
        • Takamori S.
        • et al.
        An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size.
        Proc Natl Acad Sci U S A. 2004; 101: 7158-7163
        • Fremeau Jr, R.T.
        • Kam K.
        • Qureshi T.
        • Johnson J.
        • Copenhagen D.R.
        • Storm-Mathisen J.
        • et al.
        Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites.
        Science. 2004; 304: 1815-1819
        • Daniels R.W.
        • Collins C.A.
        • Gelfand M.V.
        • Dant J.
        • Brooks E.S.
        • Krantz D.E.
        • et al.
        Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content.
        J Neurol Sci. 2004; 24: 10466-10474
        • Wilson N.R.
        • Kang J.
        • Hueske E.V.
        • Leung T.
        • Varoqui H.
        • Murnick J.G.
        • et al.
        Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1.
        J Neurol Sci. 2005; 25: 6221-6234
        • Tordera R.M.
        • Totterdell S.
        • Wojcik S.M.
        • Brose N.
        • Elizalde N.
        • Lasheras B.
        • et al.
        Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1).
        Eur J Neurosci. 2007; 25: 281-290
        • Aoki C.
        • Milner T.A.
        • Sheu K.F.
        • Blass J.P.
        • Pickel V.M.
        Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: Implications for neuron-glia interactions in glutamate transmission.
        J Neurol Sci. 1987; 7: 2214-2231
        • Wong-Riley M.
        • Anderson B.
        • Liebl W.
        • Huang Z.
        Neurochemical organization of the macaque striate cortex: Correlation of cytochrome oxidase with Na+ K+ ATPase, NADPH-diaphorase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1.
        Neuroscience. 1998; 83: 1025-1045
        • Kondziella D.
        • Brenner E.
        • Eyjolfsson E.M.
        • Markinhuhta K.R.
        • Carlsson M.L.
        • Sonnewald U.
        Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure.
        Neuropsychopharmacology. 2006; 31: 1880-1887
        • Gonzalez-Lima F.
        • Cada A.
        Quantitative histochemistry of cytochrome oxidase activity: Theory, methods and regional brain vulnerability.
        in: Gonzalez-Lima F. Cytochrome Oxidase in Neuronal Metabolism and Alzheimer's Disease. Plenum, New York1998: 55-90
        • Kanarik M.
        • Matrov D.
        • Kõiv K.
        • Eller M.
        • Tõnissaar M.
        • Harro J.
        Changes in regional long-term oxidative metabolism induced by partial serotonergic denervation and chronic variable stress in rat brain.
        Neurochem Int. 2008; 52: 432-437
        • Elizalde N.
        • Gil-Bea F.J.
        • Ramirez M.J.
        • Aisa B.
        • Lasheras B.
        • Del Rio J.
        • et al.
        Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment.
        Psychopharmacology. 2008; 199: 1-14
        • Harkin A.
        • Houlihan D.D.
        • Kelly J.P.
        Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine.
        J Psychopharmacol. 2002; 16: 115-123
        • Deacon R.M.
        Digging and marble burying in mice: Simple methods for in vivo identification of biological impacts.
        Nat Protoc. 2006; 1: 122-124
        • McGlinchey J.B.
        • Zimmerman M.
        • Young D.
        • Chelminski I.
        Diagnosing major depressive disorder, VIII: are some symptoms better than others?.
        J Nerv Ment Dis. 2006; 194: 785-790
        • Borsini F.
        • Mancinelli A.
        • D'Aranno V.
        • Evangelista S.
        • Meli A.
        On the role of endogenous GABA in the forced swimming test in rats.
        Pharmacol Biochem Behav. 1988; 29: 275-279
        • Mathews G.C.
        • Diamond J.S.
        Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength.
        J Neurol Sci. 2003; 23: 2040-2048
        • Peng L.
        • Hertz L.
        • Huang R.
        • Sonnewald U.
        • Petersen S.B.
        • Westergaard N.
        • et al.
        Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA.
        Dev Neurosci. 1993; 15: 367-377
        • Takamori S.
        • Rhee J.S.
        • Rosenmund C.
        • Jahn R.
        Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons.
        Nature. 2000; 407: 189-194
        • Fremeau Jr., R.T.
        • Troyer M.D.
        • Pahner I.
        • Nygaard G.O.
        • Tran C.H.
        • Reimer R.J.
        • et al.
        The expression of vesicular glutamate transporters defines two classes of excitatory synapse.
        Neuron. 2001; 31: 247-260
        • Duan S.
        • Anderson C.M.
        • Stein B.A.
        • Swanson R.A.
        Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST.
        J Neurol Sci. 1999; 19: 10193-10200
        • Liang J.
        • Takeuchi H.
        • Doi Y.
        • Kawanokuchi J.
        • Sonobe Y.
        • Jin S.
        • et al.
        Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity.
        Brain Res. 2008; 1210: 11-19
        • Danbolt N.C.
        Glutamate uptake.
        Prog Neurobiol. 2001; 65: 1-105
        • Schousboe A.
        • Sarup A.
        • Bak L.K.
        • Waagepetersen H.S.
        • Larsson O.M.
        Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission.
        Neurochem Int. 2004; 45: 521-527
        • Ishikawa T.
        • Sahara Y.
        • Takahashi T.
        A single packet of transmitter does not saturate postsynaptic glutamate receptors.
        Neuron. 2002; 34: 613-621
        • Waagepetersen H.S.
        • Qu H.
        • Sonnewald U.
        • Shimamoto K.
        • Schousboe A.
        Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons.
        Neurochem Int. 2005; 47: 92-102
        • Kessler H.
        • Roth J.
        • von Wietersheim J.
        • Deighton R.M.
        • Traue H.C.
        Emotion recognition patterns in patients with panic disorder.
        Depress Anxiety. 2007; 24: 223-226
        • Airaksinen E.
        • Larsson M.
        • Lundberg I.
        • Forsell Y.
        Cognitive functions in depressive disorders: Evidence from a population-based study.
        Psychol Med. 2004; 34: 83-91
        • Porter R.J.
        • Gallagher P.
        • Thompson J.M.
        • Young A.H.
        Neurocognitive impairment in drug-free patients with major depressive disorder.
        Br J Psychiatry. 2003; 182: 214-220
        • Hassler F.
        Diagnosis and treatment of localized developmental disturbances.
        MMW Fortschr Med. 2007; 149: 29-32
        • Goddard A.W.
        • Mason G.F.
        • Appel M.
        • Rothman D.L.
        • Gueorguieva R.
        • Behar K.L.
        • et al.
        Impaired GABA neuronal response to acute benzodiazepine administration in panic disorder.
        Am J Psychiatry. 2004; 161: 2186-2193
        • Phan K.L.
        • Fitzgerald D.A.
        • Cortese B.M.
        • Seraji-Bozorgzad N.
        • Tancer M.E.
        • Moore G.J.
        Anterior cingulate neurochemistry in social anxiety disorder: 1H-NMR at 4 Tesla.
        Neuroreport. 2005; 16: 183-186
        • Whiteside S.P.
        • Port J.D.
        • Deacon B.J.
        • Abramowitz J.S.
        A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety.
        Psychiatry Res. 2006; 146: 137-147
        • Smoller J.W.
        • Rosenbaum J.F.
        • Biederman J.
        • Susswein L.S.
        • Kennedy J.
        • Kagan J.
        • et al.
        Genetic association analysis of behavioral inhibition using candidate loci from mouse models.
        Am J Med Genet. 2001; 105: 226-235
        • Kash S.F.
        • Tecott L.H.
        • Hodge C.
        • Baekkeskov S.
        Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase.
        Proc Natl Acad Sci U S A. 1999; 96: 1698-1703
        • Stork O.
        • Ji F.Y.
        • Kaneko K.
        • Stork S.
        • Yoshinobu Y.
        • Moriya T.
        • et al.
        Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65.
        Brain Res. 2000; 865: 45-58
        • Gronli J.
        • Murison R.
        • Fiske E.
        • Bjorvatn B.
        • Sorensen E.
        • Portas C.M.
        • et al.
        Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions.
        Physiol Behav. 2005; 84: 571-577
        • Banasr M.
        • Chowdhury G.M.
        • Terwilliger R.
        • Newton S.S.
        • Duman R.S.
        • Behar K.L.
        • et al.
        Glial pathology in an animal model of depression: Reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole.
        Mol Psychiatry. 2008;
        • Rauen T.
        • Wiessner M.
        Fine tuning of glutamate uptake and degradation in glial cells: Common transcriptional regulation of GLAST1 and GS.
        Neurochem Int. 2000; 37: 179-189