Advertisement
Archival Report| Volume 66, ISSUE 3, P231-237, August 01, 2009

Genetic Vulnerability to Affective Psychopathology in Childhood: A Combined Voxel-Based Morphometry and Functional Magnetic Resonance Imaging Study

      Background

      The majority of affective psychopathology is rooted early in life and first emerges during childhood and adolescence. However, little is known about how genetic vulnerability affects brain structure and function in childhood since the vast majority of studies published so far have been conducted on adult participants. The present investigation examined for the first time the effects of catechol-O-methyltransferase (COMT) valine (val) 158 methionine (met) (val158met) polymorphism, which has been shown to moderate predisposition to negative mood and affective disorders, on brain structure and function in children.

      Methods

      Voxel-based morphometry and functional magnetic resonance imaging were used to measure gray matter volume and emotional reactivity in 50 children aged between 10 and 12 years. We tested the hypothesis that met158 allele affects structural brain development and confers heightened reactivity within the affective frontolimbic circuit in children.

      Results

      The met158 allele was positively associated with gray matter volume in the left hippocampal head where genotype accounted for 59% of interindividual variance. In addition, the met158 allele was positively associated with neuronal responses to fearful relative to neutral facial expressions in the right parahippocampal gyrus where genotype accounted for 14% of the interindividual variance.

      Conclusions

      These results indicate that the met158 allele is associated with increased gray matter volume and heightened reactivity during emotional processing within the limbic system in children as young as 10 to 12 years of age. These findings are consistent with the notion that genetic factors affect brain function to moderate vulnerability to affective psychopathology from childhood.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moldin S.O.
        • Gottesman I.I.
        At issue: Genes, experience, and chance in schizophrenia–positioning for the 21st century.
        Schizophr Bull. 1997; 23: 547-561
        • Caspi A.
        • Moffitt T.E.
        Gene-environment interactions in psychiatry: Joining forces with neuroscience.
        Nat Rev Neurosci. 2006; 7: 583-590
        • Fisher P.M.
        • Muñoz K.E.
        • Hariri A.R.
        Identification of neurogenetic pathways of risk for psychopathology.
        Am J Med Genet C Semin Med Genet. 2008; 148: 147-153
        • Kim-Cohen J.
        • Caspi A.
        • Moffitt T.E.
        • Harrington H.
        • Milne B.J.
        • Poulton R.
        Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort.
        Arch Gen Psychiatry. 2003; 60: 709-717
        • Saito S.
        • Iida A.
        • Sekine A.
        • Miura Y.
        • Sakamoto T.
        • Ogawa C.
        • et al.
        Identification of 197 genetic variations in six human methyltranferase genes in the Japanese population.
        J Hum Genet. 2001; 46: 529-537
        • Napolitano A.
        • Cesura A.M.
        • Da P.M.
        The role of monoamine oxidase and catechol-O-methyltransferase in dopaminergic neurotransmission.
        J Neural Transm Suppl. 1995; 45: 35-45
        • Matsumoto M.
        • Weickert C.S.
        • Akil M.
        • Lipska B.K.
        • Hyde T.M.
        • Herman M.M.
        • et al.
        Catechol-O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function.
        Neuroscience. 2003; 116: 127-137
        • Chen J.
        • Lipska B.K.
        • Halim N.
        • Ma Q.D.
        • Matsumoto M.
        • Melhem S.
        • et al.
        Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain.
        Am J Hum Genet. 2004; 75: 807-821
        • Masuda M.
        • Tsunoda M.
        • Imai K.
        High-performance liquid chromatography-fluorescent assay of catechol-O-methyltransferase activity in rat brain.
        Anal Bioanal Chem. 2003; 376: 1069-1073
        • Bruder G.E.
        • Keilp J.G.
        • Xu H.
        • Shikhman M.
        • Schori E.
        • Gorman J.M.
        • et al.
        Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations.
        Biol Psychiatry. 2005; 58: 901-907
        • Egan M.F.
        • Goldberg T.E.
        • Kolachana B.S.
        • Callicott J.H.
        • Mazzanti C.M.
        • Straub R.E.
        • et al.
        Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 6917-6922
        • Malhotra A.K.
        • Kestler L.J.
        • Mazzanti C.
        • Bates J.A.
        • Goldberg T.
        • Goldman D.
        A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition.
        Am J Psychiatry. 2002; 159: 652-654
        • Goldberg T.E.
        • Egan M.F.
        • Gscheidle T.
        • Coppola R.
        • Weickert T.
        • Kolachana B.S.
        • et al.
        Executive subprocesses in working memory: Relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia.
        Arch Gen Psychiatry. 2003; 60: 889-896
        • Diamond A.
        • Briand L.
        • Fossella J.
        • Gehlbach L.
        Genetic and neurochemical modulation of prefrontal cognitive functions in children.
        Am J Psychiatry. 2004; 161: 125-132
        • Caldú X.
        • Vendrell P.
        • Bartrés-Faz D.
        • Clemente I.
        • Bargalló N.
        • Jurado M.A.
        • et al.
        Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects.
        Neuroimage. 2007; 37: 1437-1444
        • Bertolino A.
        • Caforio G.
        • Blasi G.
        • De Candia M.
        • Latorre V.
        • Petruzzella V.
        • et al.
        Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia.
        Am J Psychiatry. 2004; 161: 1798-1805
        • Bertolino A.
        • Caforio G.
        • Petruzzella V.
        • Latorre V.
        • Rubino V.
        • Dimalta S.
        • et al.
        Prefrontal dysfunction in schizophrenia controlling for COMT Val158Met genotype and working memory performance.
        Psychiatry Res. 2006; 147: 221-226
        • Blasi G.
        • Mattay V.S.
        • Bertolino A.
        • Elvevåg B.
        • Callicott J.H.
        • Das S.
        • et al.
        Effect of catechol-O-methyltransferase val158met genotype on attentional control.
        J Neurosci. 2005; 25: 5038-5045
        • Diamond A.
        • Briand L.
        • Fossella J.
        • Gehlbach L.
        Genetic and neurochemical modulation of prefrontal cognitive functions in children.
        Am J Psychiatry. 2004; 161: 125-132
        • Wahlstrom D.
        • White T.
        • Hooper C.J.
        • Vrshek-Schallhorn S.
        • Oetting W.S.
        • Brott M.J.
        • Luciana M.
        Variations in the catechol-O-methyltransferase polymorphism and prefrontally guided behaviors in adolescents.
        Biol Psychiatry. 2007; 61: 626-632
        • Drabant E.M.
        • Hariri A.R.
        • Meyer-Lindenberg A.
        • Munoz K.E.
        • Mattay V.S.
        • Kolachana B.S.
        • et al.
        Catechol-O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation.
        Arch Gen Psychiatry. 2006; 63: 1396-1406
        • Olsson C.A.
        • Anney R.J.
        • Lotfi-Miri M.
        • Byrnes G.B.
        • Williamson R.
        • Patton G.C.
        Association between the COMT Val158Met polymorphism and propensity to anxiety in an Australian population-based longitudinal study of adolescent health.
        Psychiatr Genet. 2005; 15: 109-115
        • Thapar A.
        • Langley K.
        • Fowler T.
        • Rice F.
        • Turic D.
        • Whittinger N.
        • et al.
        Catechol-O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder.
        Arch Gen Psychiatry. 2005; 62: 1275-1278
        • Evans J.
        • Xu K.
        • Heron J.
        • Enoch M.A.
        • Araya R.
        • Lewis G.
        • et al.
        Emotional symptoms in children: The effect of maternal depression, life events, and COMT genotype.
        Am J Med Genet B Neuropsychiatr Genet. 2008; 150B: 209-218
        • Bishop S.J.
        • Cohen J.D.
        • Fossella J.
        • Casey B.J.
        • Farah M.J.
        COMT genotype influences prefrontal response to emotional distraction.
        Cogn Affect Behav Neurosci. 2006; 6: 62-70
        • Smolka M.N.
        • Schumann G.
        • Wrase J.
        • Grüsser S.M.
        • Flor H.
        • Mann K.
        • et al.
        Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex.
        J Neurosci. 2005; 25: 836-842
        • Smolka M.N.
        • Bühler M.
        • Schumann G.
        • Klein S.
        • Hu X.Z.
        • Moayer M.
        • et al.
        Gene-gene effects on central processing of aversive stimuli.
        Mol Psychiatry. 2007; 12: 307-317
        • Cerasa A.
        • Gioia M.C.
        • Labate A.
        • Liguori M.
        • Lanza P.
        • Quattrone A.
        Impact of catechol-O-methyltransferase Val(108/158) Met genotype on hippocampal and prefrontal gray matter volume.
        Neuroreport. 2008; 19: 405-408
        • Taylor W.D.
        • Züchner S.
        • Payne M.E.
        • Messer D.F.
        • Doty T.J.
        • MacFall J.R.
        • et al.
        The COMT Val158Met polymorphism and temporal lobe morphometry in healthy adults.
        Psychiatry Res. 2007; 155: 173-177
        • Zinkstok J.
        • Schmitz N.
        • van Amelsvoort T.
        • de Win M.
        • van den Brink W.
        • Baas F.
        • et al.
        The COMT val158met polymorphism and brain morphometry in healthy young adults.
        Neurosci Lett. 2006; 405: 34-39
        • Viding E.
        • Williamson D.E.
        • Hariri A.R.
        Developmental imaging genetics: Challenges and promises for translational research.
        Dev Psychopathol. 2006; 18: 877-892
        • Rosenberg D.R.
        • Lewis D.A.
        Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis.
        J Comp Neurol. 1995; 358: 383-400
        • Wechsler D.
        Wechsler Abbreviated Scale of Intelligence.
        Psychological Corporation, San Antonio, TX1999
        • Goodman R.
        • Ford T.
        • Simmons H.
        • Gatward R.
        • Meltzer H.
        Using the Strengths and Difficulties Questionnaire (SDQ) to screen for child psychiatric disorders in a community sample.
        Br J Psychiatry. 2000; 177: 534-539
        • Ekman P.
        • Friesen W.V.
        Pictures of Facial Affect.
        Consulting Psychologists Press, Palo Alto, CA1976
        • Freeman B.
        • Smith N.
        • Curtis C.
        • Huckett L.
        • Mill J.
        • Craig I.W.
        DNA from buccal swabs recruited by mail: Evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping.
        Behav Genet. 2003; 33: 67-72
        • Ashburner J.
        • Friston K.J.
        Voxel-based morphometry–the methods.
        Neuroimage. 2000; 11: 805-821
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.
        • Friston K.J.
        • Frackowiak R.S.
        A voxel-based morphometric study of ageing in 465 normal adult human brains.
        Neuroimage. 2001; 14: 21-36
        • Mechelli A.
        • Price C.J.
        • Friston K.J.
        • Ashburner J.
        Voxel-based morphometry of the human brain: Methods and applications.
        Curr Med Imaging Rev. 2005; 1: 105-113
        • Penny W.D.
        • Holmes A.P.
        Random effects analysis.
        in: Frackowiak R.S.J. Friston K.J. Frith C. Dolan R. Friston K.J. Price C.J. Human Brain Function. Academic Press, San Diego, CA2003: 843-850
        • Friston K.J.
        • Buechel C.
        • Fink G.R.
        • Morris J.
        • Rolls E.
        • Dolan R.J.
        Psychophysiological and modulatory interactions in neuroimaging.
        Neuroimage. 1997; 6: 218-229
        • Levitt P.
        Structural and functional maturation of the developing primate brain.
        J Pediatr. 2003; 143: S35-S45
        • Tunbridge E.M.
        • Weickert C.S.
        • Kleinman J.E.
        • Herman M.M.
        • Chen J.
        • Kolachana B.S.
        • et al.
        Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan.
        Cereb Cortex. 2007; 17: 1206-1212
        • Rusch B.D.
        • Abercrombie H.C.
        • Oakes T.R.
        • Schaefer S.M.
        • Davidson R.J.
        Hippocampal morphometry in depressed patients and control subjects: Relations to anxiety symptoms.
        Biol Psychiatry. 2001; 50: 960-964
        • Ploghaus A.
        • Narain C.
        • Beckmann C.F.
        • Clare S.
        • Bantick S.
        • Wise R.
        • et al.
        Exacerbation of pain by anxiety is associated with activity in a hippocampal network.
        J Neurosci. 2001; 21: 9896-9903
        • McNaughton N.
        • Gray J.A.
        Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety.
        J Affect Disord. 2000; 61: 161-176
        • McNaughton N.
        Cognitive dysfunction resulting from hippocampal hyperactivity–a possible cause of anxiety disorder?.
        Pharmacol Biochem Behav. 1997; 56: 603-611
        • Kim H.
        • Somerville L.H.
        • Johnstone T.
        • Polis S.
        • Alexander A.L.
        • Shin L.M.
        • Whalen P.J.
        Contextual modulation of amygdala responsivity to surprised faces.
        J Cogn Neurosci. 2004; 16: 1730-1745
        • Hong J.
        • Shu-Leong H.
        • Tao X.
        • Lap-Ping Y.
        Distribution of catechol-O-methyltransferase expression in human central nervous system.
        Neuroreport. 1998; 9: 2861-2864
        • Posner M.I.
        • Rothbart M.K.
        • Sheese B.E.
        • Tang Y.
        The anterior cingulate gyrus and the mechanism of self-regulation.
        Cogn Affect Behav Neurosci. 2007; 7: 391-395
        • Pavuluri M.N.
        • O'Connor M.M.
        • Harral E.M.
        • Sweeney J.A.
        An fMRI study of the interface between affective and cognitive neural circuitry in pediatric bipolar disorder.
        Psychiatry Res. 2008; 162: 244-255
        • McIntosh A.M.
        • Baig B.J.
        • Hall J.
        • Job D.
        • Whalley H.C.
        • Lymer G.K.
        • et al.
        Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis.
        Biol Psychiatry. 2007; 61: 1127-1134
        • Weinshilboum R.M.
        • Otterness D.M.
        • Szumlanski C.L.
        Methylation pharmacogenetics: Catechol-O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase.
        Annu Rev Pharmacol Toxicol. 1999; 39: 19-52
        • Ishai A.
        • Schmidt C.F.
        • Boesiger P.
        Face perception is mediated by a distributed cortical network.
        Brain Res Bull. 2005; 67: 87-93
        • Harrison P.J.
        • Tunbridge E.M.
        Catechol-O-methyltransferase (COMT): A gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders.
        Neuropsychopharmacology. 2007; 33: 3037-3045